Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA; Department of Chemistry, Cleveland State University, Cleveland, Ohio, USA.
J Biol Chem. 2022 Apr;298(4):101832. doi: 10.1016/j.jbc.2022.101832. Epub 2022 Mar 15.
Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN), yielding CNO and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on "lipid-poor" apoA-I forms via the nonenzymatic CNO pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
蛋白质赖氨酸的氨甲酰化是一种不可逆的翻译后修饰,导致生成同型瓜氨酸(N-ε-氨甲酰赖氨酸),其不再具有带电荷的ε-氨基部分。有两种不同的途径可以促进蛋白质的氨甲酰化。一种是由尿素分解产生的,形成氰酸根(CNO)和反应性亲电异氰酸酯的平衡混合物。第二种途径涉及髓过氧化物酶(MPO)催化硫氰酸盐(SCN)的氧化,生成 CNO 和异氰酸酯。载脂蛋白 A-I(apoA-I)是高密度脂蛋白(HDL)的主要蛋白质成分,是体内 MPO 催化修饰的已知靶标,将具有心脏保护作用的脂蛋白转化为促动脉粥样硬化和促凋亡的脂蛋白。我们假设,监测从人动脉粥样硬化主动脉中回收的 apoA-I 的特定部位的氨甲酰化模式,可以深入了解动脉壁内的化学环境。为了验证这一点,我们首先绘制了通过两种途径(非酶促和炎症驱动的酶促途径)体外氨甲酰化 apoA-I 获得的 apoA-I 中的氨甲酰赖氨酸图谱,这两种途径分别是在贫脂和脂化 apoA-I(重组 HDL)中。我们的结果表明,HDL 上已知的 MPO 结合位点附近的赖氨酸残基优先被酶(MPO)氨甲酰化途径靶向,而非酶促途径导致氨甲酰化赖氨酸残基沿 apoA-I 多肽链几乎均匀分布。对人主动脉粥样硬化中 apoA-I 的定量蛋白质组学分析鉴定了 21 个赖氨酸残基中的 16 个为氨甲酰化,并表明 apoA-I 在体内的大多数氨甲酰化发生在“贫脂”apoA-I 形式上,通过非酶促 CNO 途径。监测从动脉组织中回收的 apoA-I 氨甲酰化模式可以深入了解 apoA-I 结构和人动脉粥样硬化中的化学环境。