Suppr超能文献

MPC-STANet:基于多虚拟卷积和空间变换注意力机制的阿尔茨海默病识别方法

MPC-STANet: Alzheimer's Disease Recognition Method Based on Multiple Phantom Convolution and Spatial Transformation Attention Mechanism.

作者信息

Liu Yujian, Tang Kun, Cai Weiwei, Chen Aibin, Zhou Guoxiong, Li Liujun, Liu Runmin

机构信息

College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China.

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.

出版信息

Front Aging Neurosci. 2022 Jun 10;14:918462. doi: 10.3389/fnagi.2022.918462. eCollection 2022.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease with insidious and irreversible onset. The recognition of the disease stage of AD and the administration of effective interventional treatment are important to slow down and control the progression of the disease. However, due to the unbalanced distribution of the acquired data volume, the problem that the features change inconspicuously in different disease stages of AD, and the scattered and narrow areas of the feature areas (hippocampal region, medial temporal lobe, etc.), the effective recognition of AD remains a critical unmet need. Therefore, we first employ class-balancing operation using data expansion and Synthetic Minority Oversampling Technique (SMOTE) to avoid the AD MRI dataset being affected by classification imbalance in the training. Subsequently, a recognition network based on Multi-Phantom Convolution (MPC) and Space Conversion Attention Mechanism (MPC-STANet) with ResNet50 as the backbone network is proposed for the recognition of the disease stages of AD. In this study, we propose a Multi-Phantom Convolution in the way of convolution according to the channel direction and integrate it with the average pooling layer into two basic blocks of ResNet50: Conv Block and Identity Block to propose the Multi-Phantom Residual Block (MPRB) including Multi-Conv Block and Multi-Identity Block to better recognize the scattered and tiny disease features of Alzheimer's disease. Meanwhile, the weight coefficients are extracted from both vertical and horizontal directions using the Space Conversion Attention Mechanism (SCAM) to better recognize subtle structural changes in the AD MRI images. The experimental results show that our proposed method achieves an average recognition accuracy of 96.25%, F1 score of 95%, and mAP of 93%, and the number of parameters is only 1.69 M more than ResNet50.

摘要

阿尔茨海默病(AD)是一种起病隐匿且不可逆的进行性神经退行性疾病。认识AD的疾病阶段并进行有效的干预治疗对于减缓及控制疾病进展至关重要。然而,由于获取的数据量分布不均衡、AD不同疾病阶段特征变化不明显以及特征区域(海马区、内侧颞叶等)分散且范围狭窄等问题,AD的有效识别仍然是一个关键的未满足需求。因此,我们首先采用数据扩充和合成少数过采样技术(SMOTE)进行类平衡操作,以避免AD磁共振成像(MRI)数据集在训练中受到分类不平衡的影响。随后,提出了一种以ResNet50作为骨干网络,基于多幻影卷积(MPC)和空间转换注意力机制(MPC - STANet)的识别网络,用于识别AD的疾病阶段。在本研究中,我们以卷积的方式沿通道方向提出多幻影卷积,并将其与平均池化层集成到ResNet50的两个基本模块:卷积模块(Conv Block)和恒等模块(Identity Block)中,提出了包括多卷积模块和多恒等模块的多幻影残差块(MPRB),以更好地识别阿尔茨海默病分散且微小的疾病特征。同时,使用空间转换注意力机制(SCAM)从垂直和水平方向提取权重系数,以更好地识别AD MRI图像中的细微结构变化。实验结果表明,我们提出的方法实现了平均识别准确率为96.25%、F1分数为95%、平均精度均值(mAP)为93%,且参数数量仅比ResNet50多169万个。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c93a/9226438/c39ac6a3ac03/fnagi-14-918462-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验