Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, India.
Yardi School of Artificial Intelligence, Indian Institute of Technology, Delhi, New Delhi, India.
J Digit Imaging. 2023 Oct;36(5):2148-2163. doi: 10.1007/s10278-023-00873-2. Epub 2023 Jul 10.
The emergence of various deep learning approaches in diagnostic medical image segmentation has made machines capable of accomplishing human-level accuracy. However, the generalizability of these architectures across patients from different countries, Magnetic Resonance Imaging (MRI) scans from distinct vendors, and varying imaging conditions remains questionable. In this work, we propose a translatable deep learning framework for diagnostic segmentation of cine MRI scans. This study aims to render the available SOTA (state-of-the-art) architectures domain-shift invariant by utilizing the heterogeneity of multi-sequence cardiac MRI. To develop and test our approach, we curated a diverse group of public datasets and a dataset obtained from private source. We evaluated 3 SOTA CNN (Convolution neural network) architectures i.e., U-Net, Attention-U-Net, and Attention-Res-U-Net. These architectures were first trained on a combination of three different cardiac MRI sequences. Next, we examined the M&M (multi-center & mutli-vendor) challenge dataset to investigate the effect of different training sets on translatability. The U-Net architecture, trained on the multi-sequence dataset, proved to be the most generalizable across multiple datasets during validation on unseen domains. This model attained mean dice scores of 0.81, 0.85, and 0.83 for myocardial wall segmentation after testing on unseen MyoPS (Myocardial Pathology Segmentation) 2020 dataset, AIIMS (All India Institute of Medical Sciences) dataset and M&M dataset, respectively. Our framework achieved Pearson's correlation values of 0.98, 0.99, and 0.95 between the observed and predicted parameters of end diastole volume, end systole volume, and ejection fraction, respectively, on the unseen Indian population dataset.
各种深度学习方法在医学影像诊断分割中的出现,使得机器能够达到人类水平的准确性。然而,这些架构在不同国家的患者、不同供应商的磁共振成像 (MRI) 扫描以及不同成像条件下的泛化能力仍然存在疑问。在这项工作中,我们提出了一种可翻译的深度学习框架,用于诊断电影 MRI 扫描的分割。本研究旨在通过利用多序列心脏 MRI 的异质性,使现有 SOTA(最先进)架构具有域不变性。为了开发和测试我们的方法,我们整理了一组多样化的公共数据集和来自私人来源的数据集。我们评估了 3 种 SOTA CNN(卷积神经网络)架构,即 U-Net、Attention-U-Net 和 Attention-Res-U-Net。这些架构首先在三种不同的心脏 MRI 序列的组合上进行训练。接下来,我们检查了 M&M(多中心和多供应商)挑战数据集,以研究不同训练集对可翻译性的影响。在未见过的领域进行验证时,在多序列数据集上训练的 U-Net 架构在多个数据集之间表现出最具通用性。该模型在对未见的 MyoPS(心肌病理学分割)2020 数据集、AIIMS(全印度医学科学研究所)数据集和 M&M 数据集进行测试后,分别获得了心肌壁分割的平均骰子分数 0.81、0.85 和 0.83。我们的框架在未见的印度人群数据集上实现了观察到的和预测的舒张末期容积、收缩末期容积和射血分数之间的 Pearson 相关系数值分别为 0.98、0.99 和 0.95。