Suppr超能文献

CO-RADS 对疑似 2019 冠状病毒病患者的诊断准确性:单中心经验。

Diagnostic accuracy of CO-RADS in patients with suspected Coronavirus Disease-2019: A single center experience.

机构信息

Brazilian Redcross - Parana Chapter, Vicente Machado, 1310, Curitiba, Parana 80420-011, Brazil.

Brazilian Redcross - Parana Chapter, Vicente Machado, 1310, Curitiba, Parana 80420-011, Brazil; Federal University of Parana, Department of Radiology, Internal Medicine Branch, R. General Carneiro, 181, Curitiba, PR 80060-900, Brazil.

出版信息

Clin Imaging. 2022 Jun;86:7-12. doi: 10.1016/j.clinimag.2022.02.005. Epub 2022 Feb 17.

Abstract

INTRODUCTION

COVID-19 Reporting and Data System (CO-RADS) is a tool for standardizing the reports of patients with suspected or confirmed Sars-CoV-2 infection. We performed a study of the performance of the CO-RADS in a triage scenario of patients in Brazil.

METHODS

Data from 426 Computed Tomography (CT) scans from March 2020 through December 2020 were assessed in an ambidirectional, both retrospective and prospective, for the assessment in one of the six categories of the CO-RADS. We assessed sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) Youden's index, Positive and Negative Clinical Utility Index (UC + and UC- respectively) and diagnostic odds ratio (DOR). We also plotted Receiver Operating Characteristics (ROC) curve with Area Under the Curve (AUC) for CO-RADS of >4 (4 + 5).

RESULTS

For CO-RADS classification > 4 (4 + 5) considered positive, the AUC obtained was of 0.89 (95% CI of 0.02), sensitivity of 78% (95% CI of 0.3), specificity of 91% (95% CI of 0.3), PPV of 0.92 (95% CI of 0.02), NPV of 0.41 (95% CI of 0.03), PLR of 0.85 (95% CI of 0.2), and NLR of 0.23 (95% CI of 0.02).

CONCLUSION

CO-RADS demonstrated overall good diagnostic performance in stratifying patients with suspected Sars-CoV-2 infection, even those without confirmed laboratorial diagnosis, therefore being useful in a triage scenario with lack of resources.

摘要

简介

COVID-19 报告和数据系统(CO-RADS)是一种用于规范疑似或确诊 SARS-CoV-2 感染患者报告的工具。我们对巴西分诊场景中的患者进行了 CO-RADS 表现的研究。

方法

在回顾性和前瞻性双向评估中,对 2020 年 3 月至 2020 年 12 月期间的 426 例 CT 扫描数据进行评估,以评估 CO-RADS 的六个类别之一。我们评估了敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)、阳性似然比(PLR)、阴性似然比(NLR)、Youden 指数、阳性和阴性临床实用指数(UC+和 UC-)和诊断优势比(DOR)。我们还绘制了 CO-RADS >4(4+5)的接收者操作特征(ROC)曲线及其曲线下面积(AUC)。

结果

对于 CO-RADS 分类>4(4+5)考虑为阳性,获得的 AUC 为 0.89(95%CI 为 0.02),敏感性为 78%(95%CI 为 0.3),特异性为 91%(95%CI 为 0.3),PPV 为 0.92(95%CI 为 0.02),NPV 为 0.41(95%CI 为 0.03),PLR 为 0.85(95%CI 为 0.2),NLR 为 0.23(95%CI 为 0.02)。

结论

CO-RADS 在分层疑似 SARS-CoV-2 感染患者方面表现出总体良好的诊断性能,即使是那些没有确诊实验室诊断的患者,因此在资源不足的分诊场景中很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9da7/8851875/7f0564fe03e5/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验