Suppr超能文献

学习从组织图像预测前列腺癌复发。

Learning to predict prostate cancer recurrence from tissue images.

作者信息

Farrokh Mahtab, Kumar Neeraj, Gann Peter H, Greiner Russell

机构信息

Department of Computing Science, University of Alberta, Alberta, Canada.

Alberta Machine Intelligence Institute, Edmonton, Canada.

出版信息

J Pathol Inform. 2023 Nov 4;15:100344. doi: 10.1016/j.jpi.2023.100344. eCollection 2024 Dec.

Abstract

Roughly 30% of men with prostate cancer who undergo radical prostatectomy will suffer biochemical cancer recurrence (BCR). Accurately predicting which patients will experience BCR could identify who would benefit from increased surveillance or adjuvant therapy. Unfortunately, no current method can effectively predict this. We develop and evaluate PathCLR, a novel semi-supervised method that learns a model that can use hematoxylin and eosin (H&E)-stained tissue microarrays (TMAs) to predict prostate cancer recurrence within 5 years after diagnosis. The learning process involves 2 sequential steps: PathCLR (a) first employs self-supervised learning to generate effective feature representations of the input images, then (b) feeds these learned features into a fully supervised neural network classifier to learn a model for predicting BCR. We conducted training and evaluation using 2 large prostate cancer datasets: (1) the Cooperative Prostate Cancer Tissue Resource (CPCTR) with 374 patients, including 189 who experienced BCR, and (2) the Johns Hopkins University (JHU) prostate cancer dataset of 646 patients, with 451 patients having BCR. PathCLR's (10-fold cross-validation) F1 score was 0.61 for CPCTR and 0.85 for JHU. This was statistically superior (paired t-test with 05) to the best-learned model that relied solely on clinicopathological features, including PSA level, primary and secondary Gleason Grade, etc. We attribute the improvement of PathCLR over models using only clinicopathological features to its utilization of both learned latent representations of tissue core images and clinicopathological features. This finding suggests that there is essential predictive information in tissue images at the time of surgery that goes beyond the knowledge obtained from reported clinicopathological features, helping predict the patient's 5-year outcome.

摘要

接受根治性前列腺切除术的前列腺癌男性患者中,约30%会出现生化癌症复发(BCR)。准确预测哪些患者会发生BCR,有助于确定哪些患者将从加强监测或辅助治疗中获益。遗憾的是,目前尚无有效方法能实现这一预测。我们开发并评估了PathCLR,这是一种新型半监督方法,该方法学习的模型能够利用苏木精和伊红(H&E)染色的组织微阵列(TMA)来预测前列腺癌诊断后5年内的复发情况。学习过程包括两个连续步骤:PathCLR(a)首先采用自监督学习生成输入图像的有效特征表示,然后(b)将这些学习到的特征输入到全监督神经网络分类器中,以学习预测BCR的模型。我们使用两个大型前列腺癌数据集进行训练和评估:(1)前列腺癌组织协作资源库(CPCTR),包含374例患者,其中189例出现BCR;(2)约翰·霍普金斯大学(JHU)前列腺癌数据集,有646例患者,451例出现BCR。PathCLR在CPCTR数据集上(10折交叉验证)的F1分数为0.61,在JHU数据集上为0.85。与仅依赖临床病理特征(包括PSA水平、原发和继发Gleason分级等)的最佳学习模型相比,这在统计学上具有显著优势(配对t检验,P<0.05)。我们将PathCLR相对于仅使用临床病理特征的模型的改进归因于其对组织核心图像的学习潜在表示和临床病理特征的综合利用。这一发现表明,手术时的组织图像中存在超越已报道临床病理特征所获知识的重要预测信息,有助于预测患者的5年预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65bc/11662267/d002c125335a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验