Suppr超能文献

早期非小细胞肺癌复发预测。

On Predicting Recurrence in Early Stage Non-small Cell Lung Cancer.

机构信息

Data Science Institute, NUI Galway, Galway, Ireland.

Insight Centre for Data Analytics, NUI Galway, Galway, Ireland.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:853-862. eCollection 2021.

Abstract

Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data. We posit that machine learning models trained on patient data can provide an alternative approach that allows for more efficient development of many complementary models at once, superior accuracy, less dependency on the data collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline for further, more advanced studies in this area.

摘要

早期发现和减轻非小细胞肺癌(NSCLC)患者的疾病复发是一个重要问题,通常通过通用的随访筛查指南、自我报告、简单的列线图或使用回顾性数据分析来预测个体患者复发风险的统计模型来解决。我们假设,基于患者数据训练的机器学习模型可以提供一种替代方法,能够同时更有效地开发许多互补的模型,具有更高的准确性,对数据收集协议的依赖性更低,并提高预测的可解释性。在这项初步研究中,我们描述了一套应用于 2442 例早期 NSCLC 患者队列的各种机器学习模型的实验套件。我们讨论了所取得的有希望的结果,以及在开发该基线以进行该领域更先进的研究时所吸取的经验教训。

相似文献

1
On Predicting Recurrence in Early Stage Non-small Cell Lung Cancer.
AMIA Annu Symp Proc. 2022 Feb 21;2021:853-862. eCollection 2021.
4
Machine Learning-Assisted Recurrence Prediction for Patients With Early-Stage Non-Small-Cell Lung Cancer.
JCO Clin Cancer Inform. 2023 Jul;7:e2200062. doi: 10.1200/CCI.22.00062.
5
A nomogram to predict survival in non-small cell lung cancer patients treated with nivolumab.
J Transl Med. 2019 Mar 27;17(1):99. doi: 10.1186/s12967-019-1847-x.
6
Nomograms for Predicting Overall and Recurrence-free Survival From Pathologic Stage IA and IB Lung Cancer After Lobectomy.
Clin Lung Cancer. 2021 Jul;22(4):e574-e583. doi: 10.1016/j.cllc.2020.10.009. Epub 2020 Oct 22.
7
A nomogram to predict brain metastasis as the first relapse in curatively resected non-small cell lung cancer patients.
Lung Cancer. 2015 May;88(2):201-7. doi: 10.1016/j.lungcan.2015.02.006. Epub 2015 Feb 16.
10

引用本文的文献

1
Opportunities and challenges in lung cancer care in the era of large language models and vision language models.
Transl Lung Cancer Res. 2025 May 30;14(5):1830-1847. doi: 10.21037/tlcr-24-801. Epub 2025 May 23.
4
Prediction of Treatment Recommendations Via Ensemble Machine Learning Algorithms for Non-Small Cell Lung Cancer Patients in Personalized Medicine.
Cancer Inform. 2024 Oct 14;23:11769351241272397. doi: 10.1177/11769351241272397. eCollection 2024.
7
Machine Learning-Assisted Recurrence Prediction for Patients With Early-Stage Non-Small-Cell Lung Cancer.
JCO Clin Cancer Inform. 2023 Jul;7:e2200062. doi: 10.1200/CCI.22.00062.
8

本文引用的文献

1
Gender and lung cancer-SEER-based analysis.
Ann Epidemiol. 2020 Jun;46:14-19. doi: 10.1016/j.annepidem.2020.04.003. Epub 2020 May 7.
2
Survival prediction model for non-small cell lung cancer based on somatic mutations.
J Gene Med. 2020 Sep;22(9):e3206. doi: 10.1002/jgm.3206. Epub 2020 Jun 11.
5
Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method.
Phys Med. 2019 Apr;60:58-65. doi: 10.1016/j.ejmp.2019.03.024. Epub 2019 Mar 27.
6
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
8
Incidence and predictive factors of lung cancer in patients with idiopathic pulmonary fibrosis.
ERJ Open Res. 2018 Feb 2;4(1). doi: 10.1183/23120541.00111-2016. eCollection 2018 Jan.
9
The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance.
Health Inf Sci Syst. 2017 Dec 6;5(1):16. doi: 10.1007/s13755-017-0039-4. eCollection 2017 Dec.
10
Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery.
Eur J Nucl Med Mol Imaging. 2018 Feb;45(2):207-217. doi: 10.1007/s00259-017-3837-7. Epub 2017 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验