Stoll Gautier, Naldi Aurélien, Noël Vincent, Viara Eric, Barillot Emmanuel, Kroemer Guido, Thieffry Denis, Calzone Laurence
Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.
Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
Front Mol Biosci. 2022 Mar 2;9:800152. doi: 10.3389/fmolb.2022.800152. eCollection 2022.
Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility. All of these aspects cannot be easily resolved in a unique mathematical model or with a unique formalism. To cope with some of these issues, we introduce here a novel framework, UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic populations of interacting cells. We rely on the preexisting tool MaBoSS, which enables probabilistic simulations of cellular networks. A novel software layer is added to account for cell interactions and population dynamics, but without considering the spatial dimension. This modeling approach can be seen as an intermediate step towards more complex spatial descriptions. We illustrate our methodology by means of a case study dealing with TNF-induced cell death. Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment. Relatively easy to encode, UPMaBoSS simulations require only moderate computational power and execution time. To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which contains all software and models used for this study.
数学建模旨在了解生物扰动的影响,提出干预方法,并在癌症等疾病或自身免疫性疾病中重新建立细胞的正常功能。由于显而易见的原因,这是一项艰巨的任务:描述所涉及的细胞内过程所需的细节程度、细胞与细胞类型之间的众多相互作用,以及细胞不断死亡、分裂和相互作用的群体的复杂动态特性等等。另一个重要的困难来自于这些细胞的空间分布、它们的扩散和运动性。所有这些方面都不容易在一个独特的数学模型或形式体系中得到解决。为了解决其中的一些问题,我们在此引入一个新颖的框架UPMaBoSS(用于更新群体MaBoSS),专门用于对相互作用细胞的动态群体进行建模。我们依赖于现有的工具MaBoSS,它能够对细胞网络进行概率模拟。添加了一个新颖的软件层来考虑细胞相互作用和群体动态,但不考虑空间维度。这种建模方法可以看作是朝着更复杂的空间描述迈出的中间步骤。我们通过一个处理TNF诱导的细胞死亡的案例研究来说明我们的方法。有趣的是,用UPMaBoSS对细胞群体动态进行模拟揭示了TNF处理引发的抗性机制。UPMaBoSS模拟相对容易编码,只需要适度的计算能力和执行时间。为了便于重现模拟,我们提供了几个Jupyter笔记本,可以在CoLoMoTo Docker镜像中访问,该镜像包含了本研究中使用的所有软件和模型。