School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China.
Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, P. R. China.
Adv Mater. 2022 May;34(20):e2201210. doi: 10.1002/adma.202201210. Epub 2022 Apr 20.
Stroke results in the formation of a cavity in the infarcted brain tissue. Angiogenesis and neurogenesis are poor in the cavity, preventing brain-tissue regeneration for stroke therapy. To regenerate brain tissue in the cavity, filamentous phages, the human-safe nanofiber-like bacteria-specific viruses, are genetically engineered to display many copies of RGD peptide on the sidewalls. The viral nanofibers, electrostatically coated on biocompatible injectable silk protein microparticles, not only promote adhesion, proliferation, and infiltration of neural stem cells (NSCs), but also induce NSCs to differentiate preferentially into neurons in basal medium within 3 d. After the NSC-loaded microparticles are injected into the stroke cavity of rat models, the phage nanofibers on the microparticles stimulate angiogenesis and neurogenesis in the stroke sites within two weeks for brain regeneration, leading to functional recovery of limb motor control of rats within 12 weeks. The viral nanofibers also brought about the desired outcomes for stroke therapy, such as reducing inflammatory response, decreasing thickness of astrocytes scars, and increasing neuroblasts response in the subventricular zone. As virtually any functional peptide can be displayed on the phage by genetic means, the phage nanofibers hold promise as a unique and effective injectable biomaterial for stroke therapy.
中风会导致梗死脑组织中形成空洞。由于空洞中的血管生成和神经生成能力较差,无法进行中风治疗的脑组织再生。为了在空洞中再生脑组织,丝状噬菌体(一种对人体安全的纳米纤维状细菌特异性病毒)经基因工程改造,使其在侧壁上展示多个 RGD 肽拷贝。带正电荷的病毒纳米纤维静电涂覆在生物相容性可注射丝蛋白微球上,不仅促进神经干细胞(NSC)的黏附、增殖和渗透,而且还能诱导 NSC 在基础培养基中在 3 天内优先分化为神经元。将负载 NSC 的微球注入大鼠中风模型的空洞后,微球上的噬菌体纳米纤维在两周内刺激中风部位的血管生成和神经生成,从而使大鼠的肢体运动控制功能在 12 周内得到恢复。病毒纳米纤维还带来了中风治疗的理想效果,如减少炎症反应、减少星形胶质细胞瘢痕厚度以及增加室下区神经母细胞的反应。由于通过遗传手段几乎可以在噬菌体上展示任何功能肽,因此噬菌体纳米纤维有望成为一种独特而有效的用于中风治疗的可注射生物材料。