Department of Informatics, National Institute of Genetics, Shizuoka, Japan.
Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan.
Microbiome. 2022 Mar 23;10(1):50. doi: 10.1186/s40168-022-01238-7.
Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported. Therefore, in this study, to elucidate the taxonomic and ecological diversities of cryoconite bacterial consortia on a global scale, we conducted shotgun metagenomic sequencing of cryoconite acquired from a range of geographical areas comprising Polar (Arctic and Antarctic) and Asian alpine regions.
Our metagenomic data indicate that compositions of both bacterial taxa and functional genes are particularly distinctive for Asian cryoconite. Read abundance of the genes responsible for denitrification was significantly more abundant in Asian cryoconite than the Polar cryoconite, implying that denitrification is more enhanced in Asian glaciers. The taxonomic composition of Cyanobacteria, the key primary producers in cryoconite communities, also differs between the Polar and Asian samples. Analyses on the metagenome-assembled genomes and fluorescence emission spectra reveal that Asian cryoconite is dominated by multiple cyanobacterial lineages possessing phycoerythrin, a green light-harvesting component for photosynthesis. In contrast, Polar cryoconite is dominated by a single cyanobacterial species Phormidesmis priestleyi that does not possess phycoerythrin. These findings suggest that the assemblage of cryoconite bacterial communities respond to regional- or glacier-specific physicochemical conditions, such as the availability of nutrients (e.g., nitrate and dissolved organic carbon) and light (i.e., incident shortwave radiation).
Our genome-resolved metagenomics provides the first characterization of the taxonomic and metabolic diversities of cryoconite from contrasting geographical areas, highlighted by the distinct light-harvesting approaches of Cyanobacteria and nitrogen utilization between Polar and Asian cryoconite, and implies the existence of environmental controls on the assemblage of cryoconite communities. These findings deepen our understanding of the biodiversity and biogeochemical cycles of glacier ecosystems, which are susceptible to ongoing climate change and glacier decline, on a global scale. Video abstract.
冰核颗粒是在世界范围内的冰川表面发现的矿物微生物聚集体,是冰川生态系统中生物地球化学反应的热点。然而,尽管它们在冰川生态系统中具有重要意义,但全球范围内冰核群落的分类组合的地理多样性和代谢潜力仍不清楚。特别是,亚洲高山冰川上的冰核群落的基因组含量很少有报道,而亚洲高山冰川代表了地球冰量的很大一部分。因此,在这项研究中,为了阐明全球范围内冰核细菌群落的分类和生态多样性,我们对来自极地(北极和南极)和亚洲高山地区的一系列地理区域采集的冰核进行了鸟枪法宏基因组测序。
我们的宏基因组数据表明,无论是细菌分类群还是功能基因的组成,亚洲冰核都具有独特的特征。负责反硝化作用的基因的读取丰度在亚洲冰核中明显高于极地冰核,这意味着反硝化作用在亚洲冰川中更为增强。在冰核群落中作为关键初级生产者的蓝细菌的分类组成在极地和亚洲样本之间也有所不同。对宏基因组组装基因组和荧光发射光谱的分析表明,亚洲冰核主要由多个具有藻红蛋白的蓝细菌谱系主导,藻红蛋白是光合作用的绿光收集成分。相比之下,极地冰核主要由单一的蓝细菌物种 Phormidesmis priestleyi 主导,该物种不具有藻红蛋白。这些发现表明,冰核细菌群落的组合对区域或冰川特异性的物理化学条件(例如营养物质(例如硝酸盐和溶解有机碳)和光(即入射短波辐射)的可用性)做出响应。
我们的基于基因组解析的宏基因组学首次对来自对比地理位置的冰核的分类和代谢多样性进行了描述,突出了极地和亚洲冰核中蓝细菌的不同光收集方法和氮利用方式,并暗示了环境控制对冰核群落组合的存在。这些发现加深了我们对全球范围内冰川生态系统生物多样性和生物地球化学循环的理解,这些生态系统容易受到正在发生的气候变化和冰川减少的影响。