Suppr超能文献

使用自动化人工智能预测正畸拔牙的需求。

Use of automated artificial intelligence to predict the need for orthodontic extractions.

作者信息

Real Alberto Del, Real Octavio Del, Sardina Sebastian, Oyonarte Rodrigo

机构信息

Graduate Orthodontic Program, Discipline of Orthodontics, Faculty of Odontology, Universidad de los Andes, Santiago, Chile.

Private Practice, Santiago, Chile.

出版信息

Korean J Orthod. 2022 Mar 25;52(2):102-111. doi: 10.4041/kjod.2022.52.2.102.

Abstract

OBJECTIVE

To develop and explore the usefulness of an artificial intelligence system for the prediction of the need for dental extractions during orthodontic treatments based on gender, model variables, and cephalometric records.

METHODS

The gender, model variables, and radiographic records of 214 patients were obtained from an anonymized data bank containing 314 cases treated by two experienced orthodontists. The data were processed using an automated machine learning software (Auto-WEKA) and used to predict the need for extractions.

RESULTS

By generating and comparing several prediction models, an accuracy of 93.9% was achieved for determining whether extraction is required or not based on the model and radiographic data. When only model variables were used, an accuracy of 87.4% was attained, whereas a 72.7% accuracy was achieved if only cephalometric information was used.

CONCLUSIONS

The use of an automated machine learning system allows the generation of orthodontic extraction prediction models. The accuracy of the optimal extraction prediction models increases with the combination of model and cephalometric data for the analytical process.

摘要

目的

开发并探究一种人工智能系统的实用性,该系统基于性别、模型变量和头影测量记录来预测正畸治疗期间拔牙的必要性。

方法

从一个匿名数据库中获取了214例患者的性别、模型变量和影像学记录,该数据库包含由两位经验丰富的正畸医生治疗的314个病例。数据使用自动化机器学习软件(Auto-WEKA)进行处理,并用于预测拔牙的必要性。

结果

通过生成和比较多个预测模型,基于模型和影像学数据确定是否需要拔牙的准确率达到了93.9%。仅使用模型变量时,准确率为87.4%,而仅使用头影测量信息时,准确率为72.7%。

结论

使用自动化机器学习系统可以生成正畸拔牙预测模型。最佳拔牙预测模型的准确率随着模型和头影测量数据在分析过程中的结合而提高。

相似文献

引用本文的文献

6
The Future of Orthodontics: Deep Learning Technologies.正畸学的未来:深度学习技术
Cureus. 2024 Jun 10;16(6):e62045. doi: 10.7759/cureus.62045. eCollection 2024 Jun.
8
Artificial Intelligence in Orthodontics: Critical Review.人工智能在口腔正畸学中的应用:批判性综述。
J Dent Res. 2024 Jun;103(6):577-584. doi: 10.1177/00220345241235606. Epub 2024 Apr 29.

本文引用的文献

5
Tumor grading of soft tissue sarcomas using MRI-based radiomics.基于 MRI 的影像组学对软组织肉瘤进行肿瘤分级。
EBioMedicine. 2019 Oct;48:332-340. doi: 10.1016/j.ebiom.2019.08.059. Epub 2019 Sep 12.
6
An Open Science Approach to Artificial Intelligence in Healthcare.医疗保健领域人工智能的开放科学方法。
Yearb Med Inform. 2019 Aug;28(1):47-51. doi: 10.1055/s-0039-1677898. Epub 2019 Apr 25.
9
Opening the black box of machine learning.打开机器学习的黑箱。
Lancet Respir Med. 2018 Nov;6(11):801. doi: 10.1016/S2213-2600(18)30425-9. Epub 2018 Oct 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验