Zubaidi Salah L, Al-Bugharbee Hussein, Alattabi Ali W, Ridha Hussein Mohammed, Hashim Khalid, Al-Ansari Nadhir, Yaseen Zaher Mundher
Department of Civil Engineering, Wasit University, Wasit, 52001, Iraq.
College of Engineering, University of Warith Al-Anbiyaa, Karbala, 56001, Iraq.
Sci Rep. 2024 Oct 14;14(1):24042. doi: 10.1038/s41598-024-73002-w.
This research offers a novel methodology for quantifying water needs by assessing weather variables, applying a combination of data preprocessing approaches, and an artificial neural network (ANN) that integrates using a genetic algorithm enabled particle swarm optimisation (PSOGA) algorithm. The PSOGA performance was compared with different hybrid-based metaheuristic algorithms' behaviour, modified PSO, and PSO as benchmarking techniques. Based on the findings, it is possible to enhance the standard of initial data and select optimal predictions that drive urban water demand through effective data processing. Each model performed adequately in simulating the fundamental dynamics of monthly urban water demand as it relates to meteorological variables, proving that they were all successful. Statistical fitness measures showed that PSOGA-ANN outperformed competing algorithms.
本研究提供了一种新颖的方法,通过评估气象变量、应用数据预处理方法的组合以及使用基于遗传算法的粒子群优化(PSOGA)算法集成的人工神经网络(ANN)来量化用水需求。将PSOGA的性能与不同的基于混合的元启发式算法的行为、改进的PSO以及作为基准技术的PSO进行了比较。基于这些发现,通过有效的数据处理,可以提高初始数据的标准并选择驱动城市用水需求的最优预测。每个模型在模拟与气象变量相关的每月城市用水需求的基本动态方面都表现良好,证明它们都是成功的。统计适应度指标表明,PSOGA-ANN优于竞争算法。