Suppr超能文献

用于深度学习的代谢组学数据预处理方法的综合评估

A Comprehensive Evaluation of Metabolomics Data Preprocessing Methods for Deep Learning.

作者信息

Abram Krzysztof Jan, McCloskey Douglas

机构信息

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.

出版信息

Metabolites. 2022 Feb 24;12(3):202. doi: 10.3390/metabo12030202.

Abstract

Machine learning has greatly advanced over the past decade, owing to advances in algorithmic innovations, hardware acceleration, and benchmark datasets to train on domains such as computer vision, natural-language processing, and more recently the life sciences. In particular, the subfield of machine learning known as deep learning has found applications in genomics, proteomics, and metabolomics. However, a thorough assessment of how the data preprocessing methods required for the analysis of life science data affect the performance of deep learning is lacking. This work contributes to filling that gap by assessing the impact of commonly used as well as newly developed methods employed in data preprocessing workflows for metabolomics that span from raw data to processed data. The results from these analyses are summarized into a set of best practices that can be used by researchers as a starting point for downstream classification and reconstruction tasks using deep learning.

摘要

在过去十年中,由于算法创新、硬件加速以及用于计算机视觉、自然语言处理等领域(最近还包括生命科学领域)训练的基准数据集取得进展,机器学习有了极大的发展。特别是,被称为深度学习的机器学习子领域已在基因组学、蛋白质组学和代谢组学中得到应用。然而,目前缺乏对生命科学数据分析所需的数据预处理方法如何影响深度学习性能的全面评估。这项工作通过评估代谢组学数据预处理工作流程中常用的以及新开发的方法(从原始数据到处理后的数据)的影响,为填补这一空白做出了贡献。这些分析结果总结为一套最佳实践,可供研究人员作为使用深度学习进行下游分类和重建任务的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8374/8948616/013428b560ba/metabolites-12-00202-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验