Suppr超能文献

从多机构数据集的乳腺 X 光片中检测乳腺癌的深度学习模型的开发和验证。

Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets.

机构信息

Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Japan.

Department of Breast and Endocrine Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan.

出版信息

PLoS One. 2022 Mar 24;17(3):e0265751. doi: 10.1371/journal.pone.0265751. eCollection 2022.

Abstract

OBJECTIVES

The objective of this study was to develop and validate a state-of-the-art, deep learning (DL)-based model for detecting breast cancers on mammography.

METHODS

Mammograms in a hospital development dataset, a hospital test dataset, and a clinic test dataset were retrospectively collected from January 2006 through December 2017 in Osaka City University Hospital and Medcity21 Clinic. The hospital development dataset and a publicly available digital database for screening mammography (DDSM) dataset were used to train and to validate the RetinaNet, one type of DL-based model, with five-fold cross-validation. The model's sensitivity and mean false positive indications per image (mFPI) and partial area under the curve (AUC) with 1.0 mFPI for both test datasets were externally assessed with the test datasets.

RESULTS

The hospital development dataset, hospital test dataset, clinic test dataset, and DDSM development dataset included a total of 3179 images (1448 malignant images), 491 images (225 malignant images), 2821 images (37 malignant images), and 1457 malignant images, respectively. The proposed model detected all cancers with a 0.45-0.47 mFPI and had partial AUCs of 0.93 in both test datasets.

CONCLUSIONS

The DL-based model developed for this study was able to detect all breast cancers with a very low mFPI. Our DL-based model achieved the highest performance to date, which might lead to improved diagnosis for breast cancer.

摘要

目的

本研究旨在开发和验证一种基于深度学习(DL)的先进模型,用于在乳房 X 光片中检测乳腺癌。

方法

回顾性收集了 2006 年 1 月至 2017 年 12 月在大阪市立大学医院和 Medcity21 诊所的医院开发数据集、医院测试数据集和诊所测试数据集中的乳房 X 光片。使用医院开发数据集和一个公共的筛查乳房 X 光数字数据库(DDSM)数据集,通过五重交叉验证训练和验证基于 RetinaNet 的一种 DL 模型。使用测试数据集评估该模型在两个测试数据集上的敏感性、平均假阳性指标(mFPI)和 1.0 mFPI 下的部分曲线下面积(AUC)。

结果

医院开发数据集、医院测试数据集、诊所测试数据集和 DDSM 开发数据集中共有 3179 张图像(1448 张恶性图像)、491 张图像(225 张恶性图像)、2821 张图像(37 张恶性图像)和 1457 张恶性图像。所提出的模型以 0.45-0.47 mFPI 的水平检测到所有癌症,在两个测试数据集中的部分 AUC 为 0.93。

结论

本研究开发的基于 DL 的模型能够以非常低的 mFPI 检测到所有乳腺癌。我们的基于 DL 的模型实现了迄今为止最高的性能,这可能会提高乳腺癌的诊断水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed20/8947392/4d9c78a47e5b/pone.0265751.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验