Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
Department of Breast and Endocrine Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
JCO Precis Oncol. 2021 Nov;5:543-551. doi: 10.1200/PO.20.00176.
The molecular subtype of breast cancer is an important component of establishing the appropriate treatment strategy. In clinical practice, molecular subtypes are determined by receptor expressions. In this study, we developed a model using deep learning to determine receptor expressions from mammograms.
A developing data set and a test data set were generated from mammograms from the affected side of patients who were pathologically diagnosed with breast cancer from January 2006 through December 2016 and from January 2017 through December 2017, respectively. The developing data sets were used to train and validate the DL-based model with five-fold cross-validation for classifying expression of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2-neu (HER2). The area under the curves (AUCs) for each receptor were evaluated with the independent test data set.
The developing data set and the test data set included 1,448 images (997 ER-positive and 386 ER-negative, 641 PgR-positive and 695 PgR-negative, and 220 HER2-enriched and 1,109 non-HER2-enriched) and 225 images (176 ER-positive and 40 ER-negative, 101 PgR-positive and 117 PgR-negative, and 53 HER2-enriched and 165 non-HER2-enriched), respectively. The AUC of ER-positive or -negative in the test data set was 0.67 (0.58-0.76), the AUC of PgR-positive or -negative was 0.61 (0.53-0.68), and the AUC of HER2-enriched or non-HER2-enriched was 0.75 (0.68-0.82).
The DL-based model effectively classified the receptor expressions from the mammograms. Applying the DL-based model to predict breast cancer classification with a noninvasive approach would have additive value to patients.
乳腺癌的分子亚型是制定恰当治疗策略的一个重要组成部分。在临床实践中,分子亚型通过受体表达来确定。在这项研究中,我们开发了一种基于深度学习的模型,从乳房 X 光片中确定受体表达。
从 2006 年 1 月至 2016 年 12 月和 2017 年 1 月至 12 月期间病理诊断为乳腺癌的患者的患侧乳房 X 光片中生成了一个发展数据集和一个测试数据集。使用五重交叉验证来训练和验证基于深度学习的模型,以对雌激素受体(ER)、孕激素受体(PgR)和人表皮生长因子受体 2-neu(HER2)的表达进行分类。使用独立的测试数据集评估每个受体的曲线下面积(AUC)。
发展数据集和测试数据集分别包含 1448 张图像(997 张 ER 阳性和 386 张 ER 阴性、641 张 PgR 阳性和 695 张 PgR 阴性、220 张 HER2 富集和 1109 张非 HER2 富集)和 225 张图像(176 张 ER 阳性和 40 张 ER 阴性、101 张 PgR 阳性和 117 张 PgR 阴性、53 张 HER2 富集和 165 张非 HER2 富集)。在测试数据集中,ER 阳性或阴性的 AUC 为 0.67(0.58-0.76),PgR 阳性或阴性的 AUC 为 0.61(0.53-0.68),HER2 富集或非 HER2 富集的 AUC 为 0.75(0.68-0.82)。
基于深度学习的模型能够有效地从乳房 X 光片中分类受体表达。应用基于深度学习的模型通过非侵入性方法预测乳腺癌分类将对患者具有附加价值。