Department of Radiation Oncology, University Hospital, LMU Munich, Munich, D-81377, Germany.
Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, I-00168, Italy.
Phys Med Biol. 2022 Apr 19;67(9). doi: 10.1088/1361-6560/ac60b7.
Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior-inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs.We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (LSTM andLR) and online schemes (LSTM andLR), the latter to allow for continuous adaptation to recent respiratory patterns.We found theLSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively.This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance.
门控射束传输是目前磁共振引导放射治疗中呼吸运动补偿的临床实践,并且正在进行进一步的研究以实现跟踪。为了使用多叶准直器跟踪来管理分次内运动,需要在实时中考虑总系统延迟。在这项研究中,长短期记忆(LSTM)网络针对从临床获得的 2D 电影 MRI 中提取的肿瘤上下中心位置的预测进行了优化。我们使用了在慕尼黑大学医院治疗的 88 名患者进行了训练和验证(70 名患者,13.1 小时),并进行了测试(18 名患者,3.0 小时)。使用 Fondazione Policlinico Universitario Agostino Gemelli 治疗的 3 名患者作为第二组测试集(1.5 小时)。LSTM 的性能根据均方根误差(RMSE)与预测时间跨度为 250ms、500ms 和 750ms 的基线线性回归(LR)模型进行了比较。LSTM 和 LR 都采用离线(LSTM 和 LR)和在线方案(LSTM 和 LR)进行了训练,后者允许连续适应最近的呼吸模式。我们发现,LSTM 对所有研究的预测都表现最佳。具体来说,当预测提前 500ms 时,它分别达到了 1.20mm 和 1.00mm 的平均 RMSE,而表现最佳的 LR 模型分别达到了 1.42mm 和 1.22mm 的平均 RMSE,分别用于 LMU 和 Gemelli 测试集。这表明 LSTM 网络具有作为呼吸运动预测器的潜力,并且连续在线重新优化可以提高其性能。