Suppr超能文献

高通量蛋白质组学在建立胃肠道癌症潜在生物标志物中的研究进展。

Advances in High Throughput Proteomics Profiling in Establishing Potential Biomarkers for Gastrointestinal Cancer.

机构信息

Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

出版信息

Cells. 2022 Mar 11;11(6):973. doi: 10.3390/cells11060973.

Abstract

Gastrointestinal cancers (GICs) remain the most diagnosed cancers and accounted for the highest cancer-related death globally. The prognosis and treatment outcomes of many GICs are poor because most of the cases are diagnosed in advanced metastatic stages. This is primarily attributed to the deficiency of effective and reliable early diagnostic biomarkers. The existing biomarkers for GICs diagnosis exhibited inadequate specificity and sensitivity. To improve the early diagnosis of GICs, biomarkers with higher specificity and sensitivity are warranted. Proteomics study and its functional analysis focus on elucidating physiological and biological functions of unknown or annotated proteins and deciphering cellular mechanisms at molecular levels. In addition, quantitative analysis of translational proteomics is a promising approach in enhancing the early identification and proper management of GICs. In this review, we focus on the advances in mass spectrometry along with the quantitative and functional analysis of proteomics data that contributes to the establishment of biomarkers for GICs including, colorectal, gastric, hepatocellular, pancreatic, and esophageal cancer. We also discuss the future challenges in the validation of proteomics-based biomarkers for their translation into clinics.

摘要

胃肠道癌症(GICs)仍然是最常见的癌症,也是全球癌症相关死亡的主要原因。许多 GIC 的预后和治疗结果都很差,因为大多数病例在晚期转移阶段才被诊断出来。这主要归因于缺乏有效和可靠的早期诊断生物标志物。现有的 GIC 诊断生物标志物表现出不足的特异性和灵敏度。为了改善 GIC 的早期诊断,需要具有更高特异性和灵敏度的生物标志物。蛋白质组学研究及其功能分析侧重于阐明未知或注释蛋白质的生理和生物学功能,并在分子水平上破译细胞机制。此外,翻译蛋白质组学的定量分析是增强 GIC 早期识别和适当管理的有前途的方法。在这篇综述中,我们重点介绍了质谱技术的进展以及蛋白质组学数据的定量和功能分析,这些进展有助于建立包括结直肠癌、胃癌、肝细胞癌、胰腺癌和食管癌在内的 GIC 生物标志物。我们还讨论了将基于蛋白质组学的生物标志物转化为临床应用的未来挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a2/8946849/bbeb0823c5d7/cells-11-00973-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验