Suppr超能文献

COVIR:一种用于COVID-19胸部CT扫描自动肺损伤分割的新型神经网络架构O-Net的虚拟呈现。

COVIR: A virtual rendering of a novel NN architecture O-Net for COVID-19 Ct-scan automatic lung lesions segmentation.

作者信息

Amara Kahina, Aouf Ali, Kennouche Hoceine, Djekoune A Oualid, Zenati Nadia, Kerdjidj Oussama, Ferguene Farid

机构信息

CDTA Centre for Development of Advanced Technologies, City 20 August 1956 Baba Hassen, Algiers, Algeria.

USTHB University of science and technology Houari Boumediene, B.P 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria.

出版信息

Comput Graph. 2022 May;104:11-23. doi: 10.1016/j.cag.2022.03.003. Epub 2022 Mar 15.

Abstract

With the Coronavirus disease 2019 (COVID-19) spread, causing a world pandemic, and recently, the virus new variants continue to appear, making the situation more challenging and threatening, the visual assessment and quantification by expert radiologists have become costly and error-prone. Hence, there is a need to propose a model to predict the COVID-19 cases at the earliest possible to control the disease spread. In order to assist the medical professionals and reduce workload and the time the COVID-19 diagnosis cycle takes, this paper proposes a novel neural network architecture termed as O-Net to automatically segment chest Computerised Tomography Ct-scans infected by COVID-19 with optimised computing power and memory occupation. The O-Net consists of two convolutional autoencoders with an upsampling channel and a downsampling channel. Experimental tests show our proposal's effectiveness and potential, with a dice score of 0.86, pixel accuracy, precision, specificity of 0.99, 0.99, 0.98, respectively. Performance on the external dataset illustrates generalisation and scalability capabilities of the O-Net model to Ct-scan obtained from different scanners with different sizes. The second objective of this work is to introduce our virtual reality platform, COVIR, that visualises and manipulates 3D reconstructed lungs and segmented infected lesions caused by COVID-19. COVIR platform acts as a reading and visualisation support for medical practitioners to diagnose COVID-19 lung infection. The COVIR platform could be used for medical education professional practice and training. It was tested by Thirteen participants (medical staff, researchers, and collaborators), they conclude that the 3D VR visualisation of segmented Ct-Scan provides an aid diagnosis tool for better interpretation.

摘要

随着2019年冠状病毒病(COVID-19)的传播引发全球大流行,且近期该病毒的新变种不断出现,使情况更具挑战性和威胁性,专家放射科医生的视觉评估和定量分析变得既昂贵又容易出错。因此,需要提出一种模型,以便尽早预测COVID-19病例,从而控制疾病传播。为了协助医学专业人员并减少工作量以及COVID-19诊断周期所需的时间,本文提出了一种名为O-Net的新型神经网络架构,以利用优化的计算能力和内存占用自动分割受COVID-19感染的胸部计算机断层扫描(CT扫描)。O-Net由两个带有上采样通道和下采样通道的卷积自动编码器组成。实验测试表明了我们提议的有效性和潜力,其骰子系数为0.86,像素准确率、精确率、特异性分别为0.99、0.99、0.98。在外部数据集上的性能说明了O-Net模型对从不同扫描仪获得的不同尺寸CT扫描的泛化能力和可扩展性。这项工作的第二个目标是介绍我们的虚拟现实平台COVIR,该平台可可视化和操作由COVID-19引起的3D重建肺部和分割的感染病变。COVIR平台为医学从业者诊断COVID-19肺部感染提供了阅读和可视化支持。COVIR平台可用于医学教育专业实践和培训。它经过了13名参与者(医务人员、研究人员和合作者)的测试,他们得出结论,分割后的CT扫描的3D虚拟现实可视化提供了一种辅助诊断工具,有助于更好地进行解读。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62e0/8923016/64a0507f07db/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验