文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米塑料与砷共同暴露在体外长期暴露情况下加重致癌生物标志物

Nanoplastics and Arsenic Co-Exposures Exacerbate Oncogenic Biomarkers under an In Vitro Long-Term Exposure Scenario.

机构信息

Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.

Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Santiago de los Caballeros 51000, Dominican Republic.

出版信息

Int J Mol Sci. 2022 Mar 9;23(6):2958. doi: 10.3390/ijms23062958.


DOI:10.3390/ijms23062958
PMID:35328376
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8955425/
Abstract

The increasing accumulation of plastic waste and the widespread presence of its derivatives, micro- and nanoplastics (MNPLs), call for an urgent evaluation of their potential health risks. In the environment, MNPLs coexist with other known hazardous contaminants and, thus, an interesting question arises as to whether MNPLs can act as carriers of such pollutants, modulating their uptake and their harmful effects. In this context, we have examined the interaction and joint effects of two relevant water contaminants: arsenic and polystyrene nanoplastics (PSNPLs), the latter being a model of nanoplastics. Since both agents are persistent pollutants, their potential effects have been evaluated under a chronic exposure scenario and measuring different effect biomarkers involved in the cell transformation process. Mouse embryonic fibroblasts deficient for oxidative DNA damage repair mechanisms, and showing a cell transformation status, were used as a sensitive cell model. Such cells were exposed to PSNPLs, arsenic, and a combination PSNPLs/arsenic for 12 weeks. Interestingly, a physical interaction between both pollutants was demonstrated by using TEM/EDX methodologies. Results also indicate that the continuous co-exposure enhances the DNA damage and the aggressive features of the initially transformed phenotype. Remarkably, co-exposed cells present a higher proportion of spindle-like cells within the population, an increased capacity to grow independently of anchorage, as well as enhanced migrating and invading potential when compared to cells exposed to arsenic or PSNPLs alone. This study highlights the need for further studies exploring the long-term effects of contaminants of emerging concern, such as MNPLs, and the importance of considering the behavior of mixtures as part of the hazard and human risk assessment approaches.

摘要

塑料废物的不断积累和其衍生物微塑料和纳米塑料(MNPLs)的广泛存在,要求我们迫切评估它们的潜在健康风险。在环境中,MNPLs 与其他已知的有害污染物共存,因此,一个有趣的问题出现了,即 MNPLs 是否可以作为这些污染物的载体,调节它们的吸收和有害影响。在这种情况下,我们研究了两种相关水污染物:砷和聚苯乙烯纳米塑料(PSNPLs)的相互作用和联合效应,后者是纳米塑料的模型。由于这两种物质都是持久性污染物,因此在慢性暴露情况下评估了它们的潜在影响,并测量了参与细胞转化过程的不同效应生物标志物。缺乏氧化 DNA 损伤修复机制且表现出细胞转化状态的小鼠胚胎成纤维细胞被用作敏感的细胞模型。这些细胞被暴露于 PSNPLs、砷和 PSNPLs/砷的混合物中 12 周。有趣的是,通过使用 TEM/EDX 方法学证明了两种污染物之间存在物理相互作用。结果还表明,连续共暴露增强了 DNA 损伤和初始转化表型的侵袭性特征。值得注意的是,与单独暴露于砷或 PSNPLs 的细胞相比,共暴露细胞在群体中具有更高比例的类纺锤体细胞、独立于附着的生长能力以及增强的迁移和侵袭潜力。这项研究强调了需要进一步研究探索新兴关注污染物(如 MNPLs)的长期影响,以及考虑混合物行为作为危害和人类风险评估方法一部分的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/679eeb839147/ijms-23-02958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/245c61222a83/ijms-23-02958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/d8db6c988dfb/ijms-23-02958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/a773eb0647d3/ijms-23-02958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/8da6bc84ff3c/ijms-23-02958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/7ce4c19645cf/ijms-23-02958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/680bfdc6da0c/ijms-23-02958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/679eeb839147/ijms-23-02958-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/245c61222a83/ijms-23-02958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/d8db6c988dfb/ijms-23-02958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/a773eb0647d3/ijms-23-02958-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/8da6bc84ff3c/ijms-23-02958-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/7ce4c19645cf/ijms-23-02958-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/680bfdc6da0c/ijms-23-02958-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d4/8955425/679eeb839147/ijms-23-02958-g007.jpg

相似文献

[1]
Nanoplastics and Arsenic Co-Exposures Exacerbate Oncogenic Biomarkers under an In Vitro Long-Term Exposure Scenario.

Int J Mol Sci. 2022-3-9

[2]
Long-term exposure to nanoplastics alters molecular and functional traits related to the carcinogenic process.

J Hazard Mater. 2022-9-15

[3]
The potential effects of in vitro digestion on the physicochemical and biological characteristics of polystyrene nanoplastics.

Environ Pollut. 2023-7-15

[4]
Hazard Assessment of Polystyrene Nanoplastics in Primary Human Nasal Epithelial Cells, Focusing on the Autophagic Effects.

Biomolecules. 2023-1-23

[5]
Long-Term Effects of Polystyrene Nanoplastics in Human Intestinal Caco-2 Cells.

Biomolecules. 2021-10-1

[6]
Does parental exposure to nanoplastics modulate the response of Hediste diversicolor to other contaminants: A case study with arsenic.

Environ Res. 2022-11

[7]
Antagonistic in vivo interaction of polystyrene nanoplastics and silver compounds. A study using Drosophila.

Sci Total Environ. 2022-10-10

[8]
Fluorescent labeling of micro/nanoplastics for biological applications with a focus on "true-to-life" tracking.

J Hazard Mater. 2024-9-5

[9]
Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines.

Environ Int. 2022-3

[10]
Role of As3mt and Mth1 in the genotoxic and carcinogenic effects induced by long-term exposures to arsenic in MEF cells.

Toxicol Appl Pharmacol. 2020-12-15

引用本文的文献

[1]
Long-Term Exposure to Real-Life Polyethylene Terephthalate Nanoplastics Induces Carcinogenesis In Vitro.

Environ Sci Technol. 2025-6-10

[2]
Rising Concern About the Carcinogenetic Role of Micro-Nanoplastics.

Int J Mol Sci. 2024-12-30

[3]
Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells.

Toxics. 2024-12-14

[4]
Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs.

NanoImpact. 2023-10

[5]
Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity.

Int J Environ Res Public Health. 2023-8-28

[6]
Polystyrene nanoplastics exacerbated Pb-induced liver toxicity in mice.

Toxicol Res (Camb). 2023-4-27

[7]
In Vitro Cell Transformation Assays: A Valuable Approach for Carcinogenic Potentiality Assessment of Nanomaterials.

Int J Mol Sci. 2023-5-4

[8]
In Vitro Approaches to Determine the Potential Carcinogenic Risk of Environmental Pollutants.

Int J Mol Sci. 2023-4-25

[9]
Interactions of Ingested Polystyrene Microplastics with Heavy Metals (Cadmium or Silver) as Environmental Pollutants: A Comprehensive In Vivo Study Using .

Biology (Basel). 2022-10-8

[10]
Mechanisms of Nanotoxicology and the Important Role of Alternative Testing Strategies.

Int J Mol Sci. 2022-7-26

本文引用的文献

[1]
Polystyrene Nanoplastics as Carriers of Metals. Interactions of Polystyrene Nanoparticles with Silver Nanoparticles and Silver Nitrate, and Their Effects on Human Intestinal Caco-2 Cells.

Biomolecules. 2021-6-9

[2]
Ex vivo exposure to different types of graphene-based nanomaterials consistently alters human blood secretome.

J Hazard Mater. 2021-7-15

[3]
A versatile toolbox for semi-automatic cell-by-cell object-based colocalization analysis.

Sci Rep. 2020-11-4

[4]
Plastic in agricultural soils - A global risk for groundwater systems and drinking water supplies? - A review.

Chemosphere. 2020-10-1

[5]
Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier.

Arch Toxicol. 2020-9

[6]
Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines.

J Hazard Mater. 2020-11-5

[7]
Toxicity of Microplastics and Nanoplastics in Mammalian Systems.

Int J Environ Res Public Health. 2020-2-26

[8]
Arsenic and benzo[a]pyrene co-exposure acts synergistically in inducing cancer stem cell-like property and tumorigenesis by epigenetically down-regulating SOCS3 expression.

Environ Int. 2020-4

[9]
Polystyrene nanoplastic induces ROS production and affects the MAPK-HIF-1/NFkB-mediated antioxidant system in Daphnia pulex.

Aquat Toxicol. 2020-1-20

[10]
Arsenic exposure: A public health problem leading to several cancers.

Regul Toxicol Pharmacol. 2019-11-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索