Suppr超能文献

影响新型冠状病毒肺炎传播的多因素定量分析研究

Research on Quantitative Analysis of Multiple Factors Affecting COVID-19 Spread.

作者信息

Fu Yu, Lin Shaofu, Xu Zhenkai

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Beijing Institute of Smart City, Beijing University of Technology, Beijing 100124, China.

出版信息

Int J Environ Res Public Health. 2022 Mar 8;19(6):3187. doi: 10.3390/ijerph19063187.

Abstract

The Corona Virus Disease 2019 (COVID-19) is spreading all over the world. Quantitative analysis of the effects of various factors on the spread of the epidemic will help people better understand the transmission characteristics of SARS-CoV-2, thus providing a theoretical basis for governments to develop epidemic prevention and control strategies. This article uses public data sets from The Center for Systems Science and Engineering at Johns Hopkins University (JHU CSSE), Air Quality Open Data Platform, China Meteorological Data Network, and WorldPop website to construct experimental data. The epidemic situation is predicted by Dual-link BiGRU Network, and the relationship between epidemic spread and various feature factors is quantitatively analyzed by the Gauss-Newton iteration Method. The study found that population density has the greatest positive correlation to the spread of the epidemic among the selected feature factors, followed by the number of landing flights. The number of newly diagnosed daily will increase by 1.08% for every 1% of the population density, the number of newly diagnosed daily will increase by 0.98% for every 1% of the number of landing flights. The results of this study show that the control of social distance and population movement has a high priority in epidemic prevention and control strategies, and it can play a very important role in controlling the spread of the epidemic.

摘要

2019年冠状病毒病(COVID-19)正在全球蔓延。对各种因素对疫情传播的影响进行定量分析,将有助于人们更好地了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的传播特征,从而为各国政府制定疫情防控策略提供理论依据。本文利用约翰·霍普金斯大学系统科学与工程中心(JHU CSSE)、空气质量开放数据平台、中国气象数据网和世界人口网站的公共数据集构建实验数据。采用双链接双向门控循环单元(BiGRU)网络对疫情进行预测,并通过高斯-牛顿迭代法对疫情传播与各种特征因素之间的关系进行定量分析。研究发现,在所选特征因素中,人口密度与疫情传播的正相关性最大,其次是着陆航班数量。人口密度每增加1%,每日新增确诊病例数将增加1.08%;着陆航班数量每增加1%,每日新增确诊病例数将增加0.98%。本研究结果表明,在疫情防控策略中,控制社交距离和人口流动具有高度优先性,对控制疫情传播能起到非常重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d63/8953928/d3cff043909f/ijerph-19-03187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验