Suppr超能文献

早发性和成人期发作的重度抑郁症的多组学特征分析

Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder.

作者信息

Grant Caroline W, Barreto Erin F, Kumar Rakesh, Kaddurah-Daouk Rima, Skime Michelle, Mayes Taryn, Carmody Thomas, Biernacka Joanna, Wang Liewei, Weinshilboum Richard, Trivedi Madhukar H, Bobo William V, Croarkin Paul E, Athreya Arjun P

机构信息

Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA.

Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA.

出版信息

J Pers Med. 2022 Mar 6;12(3):412. doi: 10.3390/jpm12030412.

Abstract

Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.

摘要

抑郁发作年龄(AAO)与独特的症状学及临床结局相关。尚未有将全基因组关联研究(GWAS)结果与其他“组学”测量方法相结合以评估AAO的报道,而这种结合可能会揭示出对重度抑郁症(MDD)易感性和/或抗性的新标记。为填补这一空白,我们使用数据驱动的网络分析将基因组学与代谢组学相结合,以根据AAO对MDD进行特征描述和区分。本研究首先针对AAO作为连续性状进行了两项GWAS,一项是在(a)药物基因组学研究网络 - 抗抑郁药物药物基因组学研究(PGRN - AMPS)中的486名成年人中进行,另一项是在(b)联合用药增强抑郁结局(CO - MED)研究中的295名成年人中进行。来自顶级信号的变异与153种经p180分析的代谢物相结合,以建立早发性(<18岁)和成人发作性抑郁症的多组学网络特征。最显著的变异(p = 8.77×10−8)定位于SAMD3的一个内含子。对顶级信号(p < 1×10−5)的计算机功能注释表明,这些基因在大脑和胚胎发育过程中表达富集。网络分析确定了早发性与成人发作性MDD中四个变异(在INTU、FAT1、CNTN6和TM9SF2内/附近)与血浆代谢物(磷脂酰胆碱、肉碱、生物胺和氨基酸)之间的差异关联。多组学整合确定了早发性和成人发作性MDD的差异生物特征。这些生物特征需要未来的研究跟踪参与者从童年到成年,并收集重复的组学和神经影像学测量数据,以验证并深入表征对MDD发展易感性和/或抗性的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验