Insigneo Institute for in-silico medicine and Department of Computer Science, University of Sheffield, Sheffield, UK.
Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190345. doi: 10.1098/rsta.2019.0345. Epub 2020 May 25.
In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterizing patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GPs) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian process manifold interpolation (GPMI) method accounts for the topology of the atrium, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
在心房颤动患者中,通常使用局部激活时间 (LAT) 图来描述患者的病理生理学特征。LAT 图的梯度可用于计算传导速度 (CV),CV 与材料电导率直接相关,可能为心房基质特性提供重要的衡量标准。纳入 CV 计算中的不确定性有助于解释这些测量的可靠性。在这里,我们基于最近对降秩高斯过程 (GP) 的深入了解,直接在人类心房流形上对不确定的 LAT 进行概率插值。我们的高斯过程流形插值 (GPMI) 方法考虑了心房的拓扑结构,并允许计算预测 CV 的统计数据。我们在两个临床病例上验证了我们的方法,并与模拟的真实情况进行了验证。CV 的不确定性取决于数据密度、波传播方向和 CV 幅度。GPMI 适用于非欧几里得流形上其他不确定量的概率插值。本文是“心脏和心血管建模与仿真中的不确定性量化”主题特刊的一部分。