Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
Department of Pulmonary Diseases, Amphia Hospital, Breda, The Netherlands.
Palliat Med. 2022 May;36(5):821-829. doi: 10.1177/02692163221080662. Epub 2022 Mar 24.
Goals of end-of-life care must be adapted to the needs of patients with chronic obstructive pulmonary disease (COPD) who are in the last phase of life. However, identification of those patients is limited by moderate performances of existing prognostic models and by limited validation of the often-recommended surprise question.
To develop a clinical prediction model to predict 1-year mortality in patients with COPD.
Prospective study using logistic regression to develop a model in two steps: (1) external validation of the ADO, BODEX, or CODEX models (A = age; B = body mass index; C = comorbidity; D = dyspnea; EX = exacerbations; O = airflow obstruction); (2) updating of best performing model and extending it with the surprise question. Discriminative performance of the new model was assessed using internal-external validation and measured with area under the curve (AUC). A nomogram and web application were developed.
SETTINGS/PARTICIPANTS: Patients with COPD from five hospitals (September-November 2017).
Of the 358 included patients (median age 69.5 years, 50% male), 63 (17%) died within a year. The ADO index (AUC 0.73) had the best discriminative ability compared to the BODEX (AUC 0.71) or CODEX (AUC 0.68), and was extended with the surprise question. The resulting ADO-surprise question (SQ) model had an AUC of 0.79.
The ADO-SQ model offers improved discriminative performance for predicting 1-year mortality compared to the surprise question, ADO, BODEX, or CODEX. A user-friendly nomogram and web application (https://dnieboer.shinyapps.io/copd) were developed. Further external validation of the ADO-SQ in patient groups is needed.
终末期肺病患者的临终关怀目标必须适应生命末期慢性阻塞性肺疾病(COPD)患者的需求。然而,由于现有预后模型的表现不佳,以及经常推荐的意外问题的验证有限,因此识别这些患者受到限制。
开发一种临床预测模型,以预测 COPD 患者的 1 年死亡率。
前瞻性研究,使用逻辑回归分两步建立模型:(1)ADO、BODEX 或 CODEX 模型的外部验证(A=年龄;B=体重指数;C=合并症;D=呼吸困难;EX=恶化;O=气流阻塞);(2)更新表现最佳的模型,并将意外问题纳入其中。使用内部-外部验证评估新模型的判别性能,并通过曲线下面积(AUC)进行测量。开发了一个列线图和网络应用程序。
环境/参与者:来自五家医院的 COPD 患者(2017 年 9 月至 11 月)。
在 358 名纳入患者中(中位年龄 69.5 岁,50%为男性),63 名(17%)在一年内死亡。与 BODEX(AUC 0.71)或 CODEX(AUC 0.68)相比,ADO 指数(AUC 0.73)具有最佳的判别能力,并通过意外问题进行了扩展。由此产生的 ADO-意外问题(SQ)模型的 AUC 为 0.79。
与意外问题、ADO、BODEX 或 CODEX 相比,ADO-SQ 模型在预测 1 年死亡率方面具有更好的判别性能。开发了一个易于使用的列线图和网络应用程序(https://dnieboer.shinyapps.io/copd)。需要进一步在患者群体中对 ADO-SQ 进行外部验证。