Departments of Chemistry, Molecular Biology and Biochemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697-2025, USA.
Flinders Institute for Nanoscale Sciences and Technology, Flinders University, Adelaide, SA 5042, AU.
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202202021. doi: 10.1002/anie.202202021. Epub 2022 Apr 12.
Unlocking the potential of personalized medicine in point-of-care settings requires a new generation of biomarker and proteomic assays. Ideally, assays could inexpensively perform hundreds of quantitative protein measurements in parallel at the bedsides of patients. This goal greatly exceeds current capabilities. Furthermore, biomarker assays are often challenging to translate from benchtop to clinic due to difficulties achieving and assessing the necessary selectivity, sensitivity, and reproducibility. To address these challenges, we developed an efficient (<5 min), robust (comparatively lower CVs), and inexpensive (decreasing reagent use and cost by >70 %) immunoassay method. Specifically, the immunoblot membrane is dotted with the sample and then developed in a vortex fluidic device (VFD) reactor. All assay steps-blocking, binding, and washing-leverage the unique thin-film microfluidics of the VFD. The approach can accelerate direct, indirect, and sandwich immunoblot assays. The applications demonstrated include assays relevant to both the laboratory and the clinic.
在即时检测环境中挖掘个体化医疗的潜力需要新一代的生物标志物和蛋白质组学检测方法。理想情况下,检测方法能够以经济的成本在患者床边同时进行数百项定量蛋白质测量。但这一目标远远超出了当前的能力。此外,由于在实现和评估必要的选择性、灵敏度和重现性方面存在困难,生物标志物检测方法往往难以从实验室转化为临床应用。为了解决这些挑战,我们开发了一种高效(<5 分钟)、稳健(相对较低的 CV)且经济(通过减少试剂使用和成本超过 70%)的免疫检测方法。具体来说,免疫印迹膜上点有样品,然后在涡流流体装置(VFD)反应器中进行显色。所有的检测步骤——阻断、结合和洗涤——都利用了 VFD 的独特的薄膜微流控技术。该方法可以加速直接、间接和夹心免疫印迹检测。所展示的应用包括与实验室和临床相关的检测。