Suppr超能文献

涡旋流控法制备快速胶凝硅水凝胶及其嵌入漆酶纳米花在流动条件下的实时生物传感应用

Vortex Fluidic-Mediated Fabrication of Fast Gelated Silica Hydrogels with Embedded Laccase Nanoflowers for Real-Time Biosensing under Flow.

机构信息

Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia.

School of Engineering, Edith Cowan University, Joondalup, Perth, Western Australia 6027, Australia.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51999-52007. doi: 10.1021/acsami.0c15669. Epub 2020 Nov 5.

Abstract

The fabrication of hybrid protein-Cu(PO) nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the coating in continuous flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.

摘要

通过使用具有快速旋转角度管的旋流流控装置(VFD),可以显著加速通过剪切制备杂化蛋白-Cu(PO)纳米花(NFs)的过程,其中存在中间环形结构。与自由漆酶相比,所制备的漆酶 NFs(LNFs)在扩散控制下的催化活性提高了约 1.8 倍,在 VFD 中的剪切催化下进一步提高了约 2.9 倍。随后,通过将 LNFs 与硅胶水凝胶混合 15 分钟,在 VFD 管中开发了一种新的 LNF 固定化平台,LNF@silica。这导致凝胶沿着 VFD 管表面形成。所得的 LNFs@silica 涂层非常稳定且可重复使用,与玻璃小瓶中的 LNF@silica 相比,催化速率提高了 16 倍。在 LNFs@silica 涂层管内进行基于紫外-可见光谱的实时监测表明,涂层在连续流动处理中具有良好的稳定性。结果证明了 VFD 微流控平台的实用性,进一步突出了其控制化学和酶过程的能力。

相似文献

引用本文的文献

6
Under-5-Minute Immunoblot Assays by Vortex Fluidic Device Acceleration.利用涡旋流加速装置进行 5 分钟以内免疫印迹分析。
Angew Chem Int Ed Engl. 2022 Jun 7;61(23):e202202021. doi: 10.1002/anie.202202021. Epub 2022 Apr 12.

本文引用的文献

4
Protein-directed assembly of cobalt phosphate hybrid nanoflowers.蛋白质导向的磷酸钴杂化纳米花的组装。
J Colloid Interface Sci. 2016 Dec 15;484:44-50. doi: 10.1016/j.jcis.2016.08.059. Epub 2016 Aug 24.
5
Accelerating Enzymatic Catalysis Using Vortex Fluidics.利用涡流流体制备加速酶催化。
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11387-91. doi: 10.1002/anie.201604014. Epub 2016 Aug 5.
8
Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification.自组装酶-无机杂化纳米花及其在酶纯化中的应用。
Colloids Surf B Biointerfaces. 2015 Jun 1;130:299-304. doi: 10.1016/j.colsurfb.2015.04.033. Epub 2015 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验