Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia.
School of Engineering, Edith Cowan University, Joondalup, Perth, Western Australia 6027, Australia.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51999-52007. doi: 10.1021/acsami.0c15669. Epub 2020 Nov 5.
The fabrication of hybrid protein-Cu(PO) nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the coating in continuous flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.
通过使用具有快速旋转角度管的旋流流控装置(VFD),可以显著加速通过剪切制备杂化蛋白-Cu(PO)纳米花(NFs)的过程,其中存在中间环形结构。与自由漆酶相比,所制备的漆酶 NFs(LNFs)在扩散控制下的催化活性提高了约 1.8 倍,在 VFD 中的剪切催化下进一步提高了约 2.9 倍。随后,通过将 LNFs 与硅胶水凝胶混合 15 分钟,在 VFD 管中开发了一种新的 LNF 固定化平台,LNF@silica。这导致凝胶沿着 VFD 管表面形成。所得的 LNFs@silica 涂层非常稳定且可重复使用,与玻璃小瓶中的 LNF@silica 相比,催化速率提高了 16 倍。在 LNFs@silica 涂层管内进行基于紫外-可见光谱的实时监测表明,涂层在连续流动处理中具有良好的稳定性。结果证明了 VFD 微流控平台的实用性,进一步突出了其控制化学和酶过程的能力。