Suppr超能文献

无毒肽的传统筛选与计算筛选及提高选择性的方法

Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity.

作者信息

Robles-Loaiza Alberto A, Pinos-Tamayo Edgar A, Mendes Bruno, Ortega-Pila Josselyn A, Proaño-Bolaños Carolina, Plisson Fabien, Teixeira Cátia, Gomes Paula, Almeida José R

机构信息

Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.

Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30, 5 Vía Perimetral, Guayaquil 09-01-5863, Ecuador.

出版信息

Pharmaceuticals (Basel). 2022 Mar 8;15(3):323. doi: 10.3390/ph15030323.

Abstract

Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or diagnostic tools of high therapeutic value. However, only a handful have progressed to the market. Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity, the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold standard. More recently, many online databases filled with peptide sequences and their biological meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine learning-driven programs. This review details the growing contributions of in silico approaches developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides. After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the relevance of early hemolysis studies in drug development. We emphasized the computational models and algorithms used to this end in light of historical and recent findings in this promising field. We benchmarked seven predictors using peptides from different data sets, having 7-35 amino acids in length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal Matthew's correlation coefficient over 0.11. The maximum values for these statistical parameters achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were described, as well as prospects for future investigations. The development of in silico predictive approaches to peptide toxicity has just started, but their important contributions clearly demonstrate their potential for peptide science and computer-aided drug design. Methodology refinement and increasing use will motivate the timely and accurate in silico identification of selective, non-toxic peptide therapeutics.

摘要

肽作为具有高治疗价值的药物、生物标志物或诊断工具,对制药行业产生了积极影响。然而,只有少数肽进入了市场。毒性是将肽转化为临床应用的主要障碍之一。溶血或血液毒性是毒性的主要来源,是导致重要红细胞死亡的自然或疾病诱发事件。毒性的初步筛选已广泛使用红细胞作为金标准进行评估。最近,许多充满肽序列及其生物学元数据的在线数据库为使用用户友好、快速访问的机器学习驱动程序进行溶血预测铺平了道路。这篇综述详细介绍了过去十年中开发的计算机模拟方法对肽诱导的红细胞裂解大规模预测的日益增长的贡献。在概述了肽疗法的制药前景之后,我们强调了早期溶血研究在药物开发中的相关性。鉴于这一有前景领域的历史和最新发现,我们强调了为此目的使用的计算模型和算法。我们使用来自不同数据集、长度为7至35个氨基酸的肽对七个预测器进行了基准测试。根据我们的预测,这些模型的准确率超过50.42%,最小马修相关系数超过0.11。这些统计参数的最大值分别达到100.0%和1.00。最后,描述了优化肽选择性的策略以及未来研究的前景。肽毒性的计算机模拟预测方法的开发刚刚起步,但其重要贡献清楚地证明了它们在肽科学和计算机辅助药物设计中的潜力。方法学的改进和更多的使用将促使及时、准确地在计算机上鉴定出选择性、无毒的肽疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a295/8953747/a38f9124da67/pharmaceuticals-15-00323-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验