Department of Electrical Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, 700032, West Bengal, India.
Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, 700064, West Bengal, India.
Comput Biol Med. 2022 Jun;145:105437. doi: 10.1016/j.compbiomed.2022.105437. Epub 2022 Mar 21.
Breast cancer is caused by the uncontrolled growth and division of cells in the breast, whereby a mass of tissue called a tumor is created. Early detection of breast cancer can save many lives. Hence, many researchers worldwide have invested considerable effort in developing robust computer-aided tools for the classification of breast cancer using histopathological images. For this purpose, in this study we designed a dual-shuffle attention-guided deep learning model, called the dense residual dual-shuffle attention network (DRDA-Net). Inspired by the bottleneck unit of the ShuffleNet architecture, in our proposed model we incorporate a channel attention mechanism, which enhances the model's ability to learn the complex patterns of images. Moreover, the model's densely connected blocks address both the overfitting and the vanishing gradient problem, although the model is trained on a substantially small dataset. We have evaluated our proposed model on the publicly available BreaKHis dataset and achieved classification accuracies of 95.72%, 94.41%, 97.43% and 98.1% on four different magnification levels i.e., 40x, 1000x, 200x, 400x respectively which proves the supremacy of the proposed model. The relevant code of the proposed DRDA-Net model can be foundt at: https://github.com/SohamChattopadhyayEE/DRDA-Net.
乳腺癌是由乳腺细胞的不受控制的生长和分裂引起的,由此产生了称为肿瘤的组织团块。早期发现乳腺癌可以挽救许多生命。因此,全世界许多研究人员都投入了相当大的精力,使用组织病理学图像开发用于乳腺癌分类的强大计算机辅助工具。为此,在本研究中,我们设计了一种双洗牌注意力引导的深度学习模型,称为密集残差双洗牌注意力网络(DRDA-Net)。受 ShuffleNet 架构的瓶颈单元的启发,我们在提出的模型中加入了一个通道注意力机制,增强了模型学习图像复杂模式的能力。此外,模型的密集连接块解决了过拟合和梯度消失问题,尽管模型是在一个很小的数据集上训练的。我们在公开的 BreaKHis 数据集上评估了我们提出的模型,并在四个不同的放大倍数(即 40x、1000x、200x 和 400x)上分别获得了 95.72%、94.41%、97.43%和 98.1%的分类准确率,这证明了所提出模型的优越性。所提出的 DRDA-Net 模型的相关代码可以在 https://github.com/SohamChattopadhyayEE/DRDA-Net 找到。