Thatha Venkata Nagaraju, Karthik M Ganesh, Gaddam Venu Gopal, Krishna D Pramodh, Venkataramana S, Lella Kranthi Kumar, Pamula Udayaraju
Department of Information Technology, MLR Institute of Technology, Hyderabad, India.
Department of Computer Science and Engineering, GITAM School of Technology, GITAM University-Bengaluru Campus, Bengaluru, India.
Sci Rep. 2025 May 30;15(1):19034. doi: 10.1038/s41598-025-04136-8.
Breast cancer diagnosis remains a crucial challenge in medical research, necessitating accurate and automated detection methods. This study introduces an advanced deep learning framework for histopathological image classification, integrating AlexNet and Gated Recurrent Unit (GRU) networks, optimized using the Hippopotamus Optimization Algorithm (HOA). Initially, DenseNet-41 extracts intricate spatial features from histopathological images. These features are then processed by the hybrid AlexNet-GRU model, leveraging AlexNet's robust feature extraction and GRU's sequential learning capabilities. HOA is employed to fine-tune hyperparameters, ensuring optimal model performance. The proposed approach is evaluated on benchmark datasets (BreakHis and BACH), achieving a classification accuracy of 99.60%, surpassing existing state-of-the-art models. The results demonstrate the efficacy of integrating deep learning with bio-inspired optimization techniques in breast cancer detection. This research offers a robust and computationally efficient framework for improving early diagnosis and clinical decision-making, potentially enhancing patient outcomes.
乳腺癌诊断仍然是医学研究中的一项关键挑战,需要准确且自动化的检测方法。本研究引入了一种用于组织病理学图像分类的先进深度学习框架,该框架集成了AlexNet和门控循环单元(GRU)网络,并使用河马优化算法(HOA)进行优化。首先,DenseNet-41从组织病理学图像中提取复杂的空间特征。然后,这些特征由混合AlexNet-GRU模型进行处理,该模型利用了AlexNet强大的特征提取能力和GRU的序列学习能力。HOA用于微调超参数,确保模型性能达到最优。所提出的方法在基准数据集(BreakHis和BACH)上进行评估,分类准确率达到99.60%,超过了现有的最先进模型。结果表明,将深度学习与生物启发式优化技术相结合在乳腺癌检测中具有有效性。本研究为改善早期诊断和临床决策提供了一个强大且计算高效的框架,有可能改善患者的治疗结果。