Suppr超能文献

用于细胞温度传感系统微观分析的光热技术。

Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems.

作者信息

Oyama Kotaro, Ishii Shuya, Suzuki Madoka

机构信息

Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanukimachi, Takasaki, Gunma, 370-1292 Japan.

PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan.

出版信息

Biophys Rev. 2021 Nov 3;14(1):41-54. doi: 10.1007/s12551-021-00854-1. eCollection 2022 Feb.

Abstract

Could enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.

摘要

酶活性及其协同功能能否作为细胞温度传感系统?本文综述了用于各种细胞温度传感系统微观分析的最新光热技术。光学微加热技术已被开发用于在细胞水平上进行局部和快速的温度操控。先进的发光温度计可在微加热过程中可视化细胞局部温度在空间和时间上的动态变化。光学加热器和温度计可以组合成一种具有混合功能的智能纳米材料。这些技术揭示了细胞对温度的空间和时间变化的各种反应。空间温度梯度在有丝分裂和神经突生长过程中会导致不对称变形。温度的快速变化会导致细胞内钙稳态和膜电位的失衡。在这些反应中,热诱导的肌肉收缩尤为突出。还证明了短期加热会使分子马达超活化,超过其在最佳温度下的最大活性。我们讨论了光热操控细胞功能的未来前景以及为更深入理解细胞温度传感系统机制所做的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d7d/8921355/f81a38ee49e2/12551_2021_854_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验