IBM Research - Europe, Rüschlikon, Switzerland.
Nat Nanotechnol. 2022 May;17(5):507-513. doi: 10.1038/s41565-022-01095-3. Epub 2022 Mar 28.
In the mammalian nervous system, various synaptic plasticity rules act, either individually or synergistically, over wide-ranging timescales to enable learning and memory formation. Hence, in neuromorphic computing platforms, there is a significant need for artificial synapses that can faithfully express such multi-timescale plasticity mechanisms. Although some plasticity rules have been emulated with elaborate complementary metal oxide semiconductor and memristive circuitry, device-level hardware realizations of long-term and short-term plasticity with tunable dynamics are lacking. Here we introduce a phase-change memtransistive synapse that leverages both the non-volatility of the phase configurations and the volatility of field-effect modulation for implementing tunable plasticities. We show that these mixed-plasticity synapses can enable plasticity rules such as short-term spike-timing-dependent plasticity that helps with the modelling of dynamic environments. Further, we demonstrate the efficacy of the memtransistive synapses in realizing accelerators for Hopfield neural networks for solving combinatorial optimization problems.
在哺乳动物神经系统中,各种突触可塑性规则在广泛的时间尺度上单独或协同作用,以实现学习和记忆形成。因此,在神经形态计算平台中,非常需要能够真实表达这种多时间尺度可塑性机制的人工突触。虽然已经通过精心设计的互补金属氧化物半导体和忆阻电路模拟了一些可塑性规则,但缺乏具有可调动态的长期和短期可塑性的设备级硬件实现。在这里,我们引入了一种相变忆阻突触,它利用相结构的非易失性和场效应调制的易失性来实现可调可塑性。我们表明,这些混合可塑性突触可以实现短期尖峰时间依赖可塑性等可塑性规则,有助于模拟动态环境。此外,我们还展示了忆阻突触在实现用于解决组合优化问题的 Hopfield 神经网络加速器方面的功效。