Suppr超能文献

基于熔融沉积建模的3D打印技术实现的电化学(生物)传感器:设计选择、打印参数及后处理方案指南

Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols.

作者信息

Stefano Jéssica Santos, Kalinke Cristiane, da Rocha Raquel Gomes, Rocha Diego Pessoa, da Silva Vinicius Aparecido Oliani Pedro, Bonacin Juliano Alves, Angnes Lúcio, Richter Eduardo Mathias, Janegitz Bruno Campos, Muñoz Rodrigo Alejandro Abarza

机构信息

Department of Nature Sciences, Mathematics and Education, Federal University of São Carlos, 13600-970, Araras, São Paulo, Brazil.

Institute of Chemistry, University of Campinas, 13083-859, Campinas, São Paulo, Brazil.

出版信息

Anal Chem. 2022 May 3;94(17):6417-6429. doi: 10.1021/acs.analchem.1c05523. Epub 2022 Mar 29.

Abstract

The 3D printing (or additive manufacturing, AM) technology is capable to provide a quick and easy production of objects with freedom of design, reducing waste generation. Among the AM techniques, fused deposition modeling (FDM) has been highlighted due to its affordability, scalability, and possibility of processing an extensive range of materials (thermoplastics, composites, biobased materials, etc.). The possibility of obtaining electrochemical cells, arrays, pieces, and more recently, electrodes, exactly according to the demand, in varied shapes and sizes, and employing the desired materials has made from 3D printing technology an indispensable tool in electroanalysis. In this regard, the obtention of an FDM 3D printer has great advantages for electroanalytical laboratories, and its use is relatively simple. Some care has to be taken to aid the user to take advantage of the great potential of this technology, avoiding problems such as solution leakages, very common in 3D printed cells, providing well-sealed objects, with high quality. In this sense, herein, we present a complete protocol regarding the use of FDM 3D printers for the fabrication of complete electrochemical systems, including (bio)sensors, and how to improve the quality of the obtained systems. A guide from the initial printing stages, regarding the design and structure obtention, to the final application, including the improvement of obtained 3D printed electrodes for different purposes, is provided here. Thus, this protocol can provide great perspectives and alternatives for 3D printing in electroanalysis and aid the user to understand and solve several problems with the use of this technology in this field.

摘要

3D打印(或增材制造,AM)技术能够快速轻松地生产具有设计自由度的物体,减少废物产生。在增材制造技术中,熔融沉积建模(FDM)因其价格实惠、可扩展性强以及能够加工多种材料(热塑性塑料、复合材料、生物基材料等)而备受关注。能够根据需求精确获得各种形状和尺寸的电化学电池、阵列、部件,以及最近的电极,并使用所需材料,这使得3D打印技术成为电分析中不可或缺的工具。在这方面,获得一台FDM 3D打印机对电分析实验室具有很大优势,而且其使用相对简单。需要注意一些事项,以帮助用户充分利用这项技术的巨大潜力,避免出现诸如溶液泄漏等问题(这在3D打印电池中非常常见),从而提供密封性良好、质量高的物体。从这个意义上讲,在此我们提出一个关于使用FDM 3D打印机制造完整电化学系统(包括(生物)传感器)以及如何提高所获系统质量的完整方案。这里提供了一个从初始打印阶段(关于设计和结构获取)到最终应用的指南,包括针对不同目的改进所获得的3D打印电极。因此,该方案可为电分析中的3D打印提供广阔的前景和选择,并帮助用户理解和解决在该领域使用这项技术时遇到的几个问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验