Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA.
Hum Mol Genet. 2022 Aug 23;31(16):2779-2795. doi: 10.1093/hmg/ddac072.
Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.
遗传性痉挛性截瘫(HSPs)是一大类影响最长皮质脊髓束轴突(SPG1-86 及其他)的遗传性神经疾病,其共同表现为下肢痉挛和步态障碍。常见的常染色体显性遗传性 HSP 是由编码微管切割 ATP 酶 spastin(SPAST;SPG4)、膜结合 GTP 酶 atlastin-1(ATL1;SPG3A)和类似网蛋白、微管结合蛋白 REEP1(REEP1;SPG31)的基因突变引起的。这些蛋白质相互结合,共同作用于管状内质网(ER)网络的形成。通常情况下, HSP 的小鼠模型表现出轻度、迟发性表型,这可能反映了它们的皮质脊髓束轴突长度与人类相比要短得多。在这里,我们构建了一种 HSP 的稳健双突变小鼠模型,该模型中 atlastin-1 的基因发生了 K80A 敲入(KI)错义突变,从而使其 GTP 酶活性丧失,而其结合伴侣 Reep1 则被敲除。 Atl1KI/KI/Reep1-/- 小鼠表现出多种运动功能测试的早发性和快速进展性下降。此外,基于机器学习自动分割的聚焦离子束扫描电子显微镜数据集的重建,突变型皮质脊髓束轴突中的 ER 显著横向扩张且周期性扩张,呈现出阶梯样外观,且这种扩张方式与突变体剂量相关。与 ER 形态变化同步,轴突线粒体碎片化, Atl1KI/KI/Reep1-/- 脊髓中低磷酸化神经丝 H 和 M 亚基的比例显著增加。这些发现的共同出现将 ER 形态变化与线粒体形态和细胞骨架组织的改变联系起来。 Atl1KI/KI/Reep1-/- 小鼠代表了一种具有可靠行为和细胞读数的 HSP 早期发病的啮齿动物模型,可用于测试新型治疗方法。