Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
Department of Cardiothoracic Surgery, School of Medicine, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14769-14778. doi: 10.1073/pnas.2000207117. Epub 2020 Jun 15.
Electrophysiological mapping of chronic atrial fibrillation (AF) at high throughput and high resolution is critical for understanding its underlying mechanism and guiding definitive treatment such as cardiac ablation, but current electrophysiological tools are limited by either low spatial resolution or electromechanical uncoupling of the beating heart. To overcome this limitation, we herein introduce a scalable method for fabricating a tissue-like, high-density, fully elastic electrode (elastrode) array capable of achieving real-time, stable, cellular level-resolution electrophysiological mapping in vivo. Testing with acute rabbit and porcine models, the device is proven to have robust and intimate tissue coupling while maintaining its chemical, mechanical, and electrical properties during the cardiac cycle. The elastrode array records epicardial atrial signals with comparable efficacy to currently available endocardial-mapping techniques but with 2 times higher atrial-to-ventricular signal ratio and >100 times higher spatial resolution and can reliably identify electrical local heterogeneity within an area of simultaneously identified rotor-like electrical patterns in a porcine model of chronic AF.
高通量和高分辨率的慢性心房颤动(AF)的电生理描记对于理解其潜在机制和指导心脏消融等明确治疗至关重要,但目前的电生理工具要么空间分辨率低,要么跳动心脏的机电解耦。为了克服这一限制,我们在此引入了一种可扩展的方法来制造组织样、高密度、全弹性电极(elastrode)阵列,该阵列能够在体内实现实时、稳定、细胞级分辨率的电生理描记。通过对急性兔和猪模型的测试,该设备被证明具有强大的、紧密的组织耦合性,同时在心脏周期内保持其化学、机械和电气性能。elastrode 阵列记录心外膜心房信号的效果可与目前可用的心内膜映射技术相媲美,但心房与心室的信号比高 2 倍,空间分辨率高 100 倍以上,并且可以可靠地识别慢性 AF 猪模型中同时识别的转子样电模式区域内的电局部异质性。