Suppr超能文献

基于内在可拉伸电极阵列实现细胞分辨率的体内心房颤动电生理图谱绘制。

Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA 94305.

Department of Cardiothoracic Surgery, School of Medicine, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14769-14778. doi: 10.1073/pnas.2000207117. Epub 2020 Jun 15.

Abstract

Electrophysiological mapping of chronic atrial fibrillation (AF) at high throughput and high resolution is critical for understanding its underlying mechanism and guiding definitive treatment such as cardiac ablation, but current electrophysiological tools are limited by either low spatial resolution or electromechanical uncoupling of the beating heart. To overcome this limitation, we herein introduce a scalable method for fabricating a tissue-like, high-density, fully elastic electrode (elastrode) array capable of achieving real-time, stable, cellular level-resolution electrophysiological mapping in vivo. Testing with acute rabbit and porcine models, the device is proven to have robust and intimate tissue coupling while maintaining its chemical, mechanical, and electrical properties during the cardiac cycle. The elastrode array records epicardial atrial signals with comparable efficacy to currently available endocardial-mapping techniques but with 2 times higher atrial-to-ventricular signal ratio and >100 times higher spatial resolution and can reliably identify electrical local heterogeneity within an area of simultaneously identified rotor-like electrical patterns in a porcine model of chronic AF.

摘要

高通量和高分辨率的慢性心房颤动(AF)的电生理描记对于理解其潜在机制和指导心脏消融等明确治疗至关重要,但目前的电生理工具要么空间分辨率低,要么跳动心脏的机电解耦。为了克服这一限制,我们在此引入了一种可扩展的方法来制造组织样、高密度、全弹性电极(elastrode)阵列,该阵列能够在体内实现实时、稳定、细胞级分辨率的电生理描记。通过对急性兔和猪模型的测试,该设备被证明具有强大的、紧密的组织耦合性,同时在心脏周期内保持其化学、机械和电气性能。elastrode 阵列记录心外膜心房信号的效果可与目前可用的心内膜映射技术相媲美,但心房与心室的信号比高 2 倍,空间分辨率高 100 倍以上,并且可以可靠地识别慢性 AF 猪模型中同时识别的转子样电模式区域内的电局部异质性。

相似文献

1
Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14769-14778. doi: 10.1073/pnas.2000207117. Epub 2020 Jun 15.
2
Global multielectrode contact-mapping plus ablation with a single catheter in patients with atrial fibrillation: Global AF study.
J Cardiovasc Electrophysiol. 2019 Nov;30(11):2248-2255. doi: 10.1111/jce.14172. Epub 2019 Oct 2.
3
Human Atrial Fibrillation Drivers Resolved With Integrated Functional and Structural Imaging to Benefit Clinical Mapping.
JACC Clin Electrophysiol. 2018 Dec;4(12):1501-1515. doi: 10.1016/j.jacep.2018.08.024. Epub 2018 Nov 1.
6
Unmasking atrial repolarization to assess alternans, spatiotemporal heterogeneity, and susceptibility to atrial fibrillation.
Heart Rhythm. 2016 Apr;13(4):953-61. doi: 10.1016/j.hrthm.2015.11.019. Epub 2015 Nov 23.
7
Identification of repetitive atrial activation patterns in persistent atrial fibrillation by direct contact high-density electrogram mapping.
J Cardiovasc Electrophysiol. 2019 Dec;30(12):2704-2712. doi: 10.1111/jce.14214. Epub 2019 Oct 15.
8
Quantitative analysis of localized sources identified by focal impulse and rotor modulation mapping in atrial fibrillation.
Circ Arrhythm Electrophysiol. 2015 Jun;8(3):554-61. doi: 10.1161/CIRCEP.115.002721. Epub 2015 Apr 14.

引用本文的文献

1
Multifunctional bioelectronics for brain-body circuits.
Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.
4
Anti-fatigue adhesive non-swelling hydrogel constructed by covalent topological structure and micro-nano gel for stretchable bioelectronics.
Bioact Mater. 2025 Jul 9;53:178-187. doi: 10.1016/j.bioactmat.2025.06.045. eCollection 2025 Nov.
6
Recent Progress on Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Bioelectrodes.
Small Sci. 2023 Apr 24;3(7):2300008. doi: 10.1002/smsc.202300008. eCollection 2023 Jul.
7
10
Patterning Adhesive Layers for Array Electrodes via Electrochemically Grafted Polymers.
ACS Omega. 2025 Jan 16;10(3):3190-3198. doi: 10.1021/acsomega.4c10830. eCollection 2025 Jan 28.

本文引用的文献

1
Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation.
Nat Biomed Eng. 2019 Jan;3(1):58-68. doi: 10.1038/s41551-018-0335-6. Epub 2019 Jan 8.
3
Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics.
Nat Nanotechnol. 2018 Nov;13(11):1048-1056. doi: 10.1038/s41565-018-0226-8. Epub 2018 Aug 13.
4
Electromechanical vortex filaments during cardiac fibrillation.
Nature. 2018 Mar 29;555(7698):667-672. doi: 10.1038/nature26001. Epub 2018 Feb 21.
5
Bring on the bodyNET.
Nature. 2017 Sep 20;549(7672):328-330. doi: 10.1038/549328a.
7
Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters.
Circ Res. 2017 Apr 28;120(9):1396-1398. doi: 10.1161/CIRCRESAHA.116.310489.
8
A highly stretchable, transparent, and conductive polymer.
Sci Adv. 2017 Mar 10;3(3):e1602076. doi: 10.1126/sciadv.1602076. eCollection 2017 Mar.
9
Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization.
ACS Nano. 2017 Mar 28;11(3):2561-2574. doi: 10.1021/acsnano.6b05318. Epub 2017 Mar 6.
10
Mapping Atrial Fibrillation: 2015 Update.
J Atr Fibrillation. 2015 Dec 31;8(4):1227. doi: 10.4022/jafib.1227. eCollection 2015 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验