IEEE Trans Neural Syst Rehabil Eng. 2022;30:915-924. doi: 10.1109/TNSRE.2022.3163503. Epub 2022 Apr 13.
The electroencephalogram (EEG), for measuring the electrophysiological activity of the brain, has been widely applied in automatic detection of epilepsy seizures. Various EEG-based seizure detection algorithms have already yielded high sensitivity, but training those algorithms requires a large amount of labelled data. Data labelling is often done with a lot of human efforts, which is very time-consuming. In this study, we propose a hybrid system integrating an unsupervised learning (UL) module and a supervised learning (SL) module, where the UL module can significantly reduce the workload of data labelling. For preliminary seizure screening, UL synthesizes amplitude-integrated EEG (aEEG) extraction, isolation forest-based anomaly detection, adaptive segmentation, and silhouette coefficient-based anomaly detection evaluation. The UL module serves to quickly locate the determinate subjects (seizure segments and seizure-free segments) and the indeterminate subjects (potential seizure candidates). Afterwards, more robust seizure detection for the indeterminate subjects is performed by the SL using an EasyEnsemble algorithm. EasyEnsemble, as a class-imbalance learning method, can potentially decrease the generalization error of the seizure-free segments. The proposed method can significantly reduce the workload of data labelling while guaranteeing satisfactory performance. The proposed seizure detection system is evaluated using the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp EEG dataset, and it achieves a mean accuracy of 92.62%, a mean sensitivity of 95.55%, and a mean specificity of 92.57%. To the best of our knowledge, this is the first epilepsy seizure detection study employing the integration of both the UL and the SL modules, achieving a competitive performance superior or similar to that of the state-of-the-art methods.
脑电图(EEG)用于测量大脑的电生理活动,已广泛应用于癫痫发作的自动检测。各种基于 EEG 的癫痫发作检测算法已经具有较高的灵敏度,但训练这些算法需要大量的标记数据。数据标记通常需要大量的人工工作,这非常耗时。在这项研究中,我们提出了一种集成无监督学习(UL)模块和监督学习(SL)模块的混合系统,其中 UL 模块可以显著减少数据标记的工作量。对于初步的癫痫筛查,UL 综合了振幅整合 EEG(aEEG)提取、基于隔离森林的异常检测、自适应分割和基于轮廓系数的异常检测评估。UL 模块用于快速定位确定的主题(癫痫发作段和无癫痫发作段)和不确定的主题(潜在的癫痫发作候选者)。然后,使用 EasyEnsemble 算法通过 SL 对不确定的主题进行更稳健的癫痫检测。EasyEnsemble 作为一种类不平衡学习方法,有可能降低无癫痫发作段的泛化误差。所提出的方法可以显著减少数据标记的工作量,同时保证令人满意的性能。所提出的癫痫检测系统使用波士顿儿童医院-麻省理工学院(CHB-MIT)头皮 EEG 数据集进行评估,平均准确率为 92.62%,平均灵敏度为 95.55%,平均特异性为 92.57%。据我们所知,这是首次采用 UL 和 SL 模块集成的癫痫发作检测研究,其性能优于或类似于最先进的方法。