Suppr超能文献

基于 1D-MobileNet 的 BNNSMOTE 数据增强算法在癫痫检测中的应用效果。

Effects of Data Augmentation with the BNNSMOTE Algorithm in Seizure Detection Using 1D-MobileNet.

机构信息

School of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo 454000, China.

出版信息

J Healthc Eng. 2022 Dec 19;2022:4114178. doi: 10.1155/2022/4114178. eCollection 2022.

Abstract

Automatic seizure detection technology has important implications for reducing the workload of neurologists for epilepsy diagnosis and treatment. Due to the unpredictable nature of seizures, the imbalanced classification of seizure and nonseizure data continues to be challenging. In this work, we first propose a novel algorithm named the borderline nearest neighbor synthetic minority oversampling technique (BNNSMOTE) to address the imbalanced classification problem and improve seizure detection performance. The algorithm uses the nearest neighbor notion to generate nonseizure samples near the boundary, then determines the seizure samples that are difficult to learn at the boundary, and lastly selects seizure samples at random to be used in the synthesis of new samples. In view of the characteristic that electroencephalogram (EEG) signals are one-dimensional signals, we then develop a 1D-MobileNet model to validate the algorithm's performance. Results demonstrate that the proposed algorithm outperforms previous seizure detection methods on the CHB-MIT dataset, achieving an average accuracy of 99.40%, a recall value of 87.46%, a precision of 97.17%, and an F1-score of 91.90%, respectively. We also had considerable success when we used additional datasets for verification at the same time. Our algorithm's data augmentation effects are more pronounced and perform better at seizure detection than the existing imbalanced techniques. Besides, the model's parameters and calculation volume have been significantly reduced, making it more suitable for mobile terminals and embedded devices.

摘要

自动癫痫发作检测技术对于减少神经科医生在癫痫诊断和治疗方面的工作量具有重要意义。由于癫痫发作的不可预测性,癫痫发作和非癫痫发作数据的不平衡分类仍然具有挑战性。在这项工作中,我们首先提出了一种名为边界最近邻合成少数过采样技术(BNNSMOTE)的新算法,以解决不平衡分类问题并提高癫痫发作检测性能。该算法利用最近邻概念在边界附近生成非癫痫发作样本,然后确定在边界处难以学习的癫痫发作样本,最后随机选择癫痫发作样本用于新样本的合成。鉴于脑电图(EEG)信号是一维信号的特点,我们随后开发了 1D-MobileNet 模型来验证算法的性能。结果表明,与 CHB-MIT 数据集上的先前癫痫发作检测方法相比,所提出的算法在平均准确率为 99.40%、召回值为 87.46%、精度为 97.17%和 F1 得分为 91.90%方面表现出色。同时,我们在使用其他数据集进行验证时也取得了相当大的成功。与现有的不平衡技术相比,我们的算法在数据增强效果方面更为明显,在癫痫发作检测方面表现更好。此外,模型的参数和计算量大大减少,使其更适合移动终端和嵌入式设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd27/9792253/3418cf6ad79e/JHE2022-4114178.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验