School of Biomedical Engineering, Hamilton, ON, L8S 4L8, Canada.
Department of Mechanical Engineering, Hamilton, ON, L8S 4L8, Canada.
Sci Rep. 2022 Mar 30;12(1):5380. doi: 10.1038/s41598-022-09378-4.
Titanium alloys, in particular, medical-grade Ti-6Al-4 V, are heavily used in orthopaedic applications due to their high moduli, strength, and biocompatibility. Implant infection can result in biofilm formation and failure of prosthesis. The formation of a biofilm on implants protects bacteria from antibiotics and the immune response, resulting in the propagation of the infection and ultimately resulting in device failure. Recently, slippery liquid-infused surfaces (LIS) have been investigated for their stable liquid interface, which provides excellent repellent properties to suppress biofilm formation. One of the current limitations of LIS coatings lies in the indistinctive repellency of bone cells in orthopaedic applications, resulting in poor tissue integration and bone ingrowth with the implant. Here, we report a chitosan impregnated LIS coating that facilitates cell adhesion while preventing biofilm formation. The fabricated coating displayed high contact angles (108.2 ± 5.2°) and low sliding angles (3.56 ± 4.3°). Elemental analysis obtained using X-ray photoelectron spectroscopy (XPS) confirmed the availability of fluorine and nitrogen, indicating the presence of fluorosilane and chitosan in the final coating. Furthermore, our results suggest that chitosan-conjugated LIS increased cell adhesion of osteoblast-like SaOS-2 cells and significantly promoted proliferation (a fourfold increase at 7-day incubation) compared to conventional titanium liquid-infused surfaces. Furthermore, the chitosan conjugated LIS significantly reduced biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA) by up to 50% and 75% when compared to untreated titanium and chitosan-coated titanium, respectively. The engineered coating can be easily modified with other biopolymers or capture molecules to be applied to other biomaterials where tissue integration and biofilm prevention are needed.
钛合金,特别是医疗级 Ti-6Al-4V,由于其高模量、高强度和生物相容性,在骨科应用中得到了广泛应用。植入物感染会导致生物膜形成和假体失效。植入物上生物膜的形成会保护细菌免受抗生素和免疫反应的影响,从而导致感染的传播,并最终导致器械失效。最近,滑液浸润表面(LIS)因其稳定的液体界面而受到研究,该界面提供了出色的斥水性,可抑制生物膜形成。LIS 涂层的当前限制之一在于其在骨科应用中对骨细胞的不明显排斥性,导致组织整合和骨与植入物的融合不良。在这里,我们报告了一种壳聚糖浸渍的 LIS 涂层,它可以促进细胞黏附,同时防止生物膜形成。所制备的涂层具有高接触角(108.2±5.2°)和低滑动角(3.56±4.3°)。使用 X 射线光电子能谱(XPS)进行的元素分析证实了氟和氮的存在,表明氟硅烷和壳聚糖存在于最终涂层中。此外,我们的结果表明,壳聚糖偶联的 LIS 增加了成骨样 SaOS-2 细胞的黏附,并与传统的钛液浸润表面相比,显著促进了增殖(在 7 天孵育时增加了四倍)。此外,与未经处理的钛和壳聚糖涂覆的钛相比,壳聚糖偶联的 LIS 可将耐甲氧西林金黄色葡萄球菌(MRSA)的生物膜形成减少多达 50%和 75%。该工程涂层可以很容易地与其他生物聚合物或捕获分子进行修饰,以应用于需要组织整合和生物膜预防的其他生物材料。