Huellebrand Markus, Ivantsits Matthias, Tautz Lennart, Kelle Sebastian, Hennemuth Anja
Institute of Cardiovascular Computer-Assisted Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Cardiovascular Research and Development, Fraunhofer MEVIS, Bremen, Germany.
Front Cardiovasc Med. 2022 Mar 10;9:829512. doi: 10.3389/fcvm.2022.829512. eCollection 2022.
The quality and acceptance of machine learning (ML) approaches in cardiovascular data interpretation depends strongly on model design and training and the interaction with the clinical experts. We hypothesize that a software infrastructure for the training and application of ML models can support the improvement of the model training and provide relevant information for understanding the classification-relevant data features. The presented solution supports an iterative training, evaluation, and exploration of machine-learning-based multimodal data interpretation methods considering cardiac MRI data. Correction, annotation, and exploration of clinical data and interpretation of results are supported through dedicated interactive visual analytics tools. We test the presented concept with two use cases from the ACDC and EMIDEC cardiac MRI image analysis challenges. In both applications, pre-trained 2D U-Nets are used for segmentation, and classifiers are trained for diagnostic tasks using radiomics features of the segmented anatomical structures. The solution was successfully used to identify outliers in automatic segmentation and image acquisition. The targeted curation and addition of expert annotations improved the performance of the machine learning models. Clinical experts were supported in understanding specific anatomical and functional characteristics of the assigned disease classes.
机器学习(ML)方法在心血管数据解读中的质量和接受度在很大程度上取决于模型设计与训练以及与临床专家的互动。我们假设,用于ML模型训练和应用的软件基础设施能够支持模型训练的改进,并为理解与分类相关的数据特征提供相关信息。所提出的解决方案支持对基于机器学习的多模态数据解读方法进行迭代训练、评估和探索,该方法考虑了心脏磁共振成像(MRI)数据。通过专用的交互式视觉分析工具支持临床数据的校正、标注和探索以及结果解读。我们使用来自ACDC和EMIDEC心脏MRI图像分析挑战的两个用例来测试所提出的概念。在这两个应用中,预训练的二维U-Net用于分割,并使用分割后的解剖结构的放射组学特征训练分类器用于诊断任务。该解决方案成功用于识别自动分割和图像采集中的异常值。有针对性的管理和添加专家标注提高了机器学习模型的性能。支持临床专家理解所分配疾病类别的特定解剖和功能特征。
Comput Methods Programs Biomed. 2020-2
Front Physiol. 2022-3-10
Comput Med Imaging Graph. 2021-3
Comput Methods Programs Biomed. 2018-6-26
Proc IEEE Int Conf Big Data. 2018-12
Clin Res Cardiol. 2024-9
IEEE Trans Vis Comput Graph. 2023-3
J Imaging. 2020-6-20
Radiol Artif Intell. 2019-11-27
Nat Rev Cardiol. 2021-8
Front Cardiovasc Med. 2020-11-2
JCO Clin Cancer Inform. 2020-11
Cardiol Res Pract. 2020-6-27