文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于基于心脏磁共振成像(CMR)的心脏病分类的机器学习解决方案开发与应用的协作方法。

A Collaborative Approach for the Development and Application of Machine Learning Solutions for CMR-Based Cardiac Disease Classification.

作者信息

Huellebrand Markus, Ivantsits Matthias, Tautz Lennart, Kelle Sebastian, Hennemuth Anja

机构信息

Institute of Cardiovascular Computer-Assisted Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Cardiovascular Research and Development, Fraunhofer MEVIS, Bremen, Germany.

出版信息

Front Cardiovasc Med. 2022 Mar 10;9:829512. doi: 10.3389/fcvm.2022.829512. eCollection 2022.


DOI:10.3389/fcvm.2022.829512
PMID:35360025
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8960112/
Abstract

The quality and acceptance of machine learning (ML) approaches in cardiovascular data interpretation depends strongly on model design and training and the interaction with the clinical experts. We hypothesize that a software infrastructure for the training and application of ML models can support the improvement of the model training and provide relevant information for understanding the classification-relevant data features. The presented solution supports an iterative training, evaluation, and exploration of machine-learning-based multimodal data interpretation methods considering cardiac MRI data. Correction, annotation, and exploration of clinical data and interpretation of results are supported through dedicated interactive visual analytics tools. We test the presented concept with two use cases from the ACDC and EMIDEC cardiac MRI image analysis challenges. In both applications, pre-trained 2D U-Nets are used for segmentation, and classifiers are trained for diagnostic tasks using radiomics features of the segmented anatomical structures. The solution was successfully used to identify outliers in automatic segmentation and image acquisition. The targeted curation and addition of expert annotations improved the performance of the machine learning models. Clinical experts were supported in understanding specific anatomical and functional characteristics of the assigned disease classes.

摘要

机器学习(ML)方法在心血管数据解读中的质量和接受度在很大程度上取决于模型设计与训练以及与临床专家的互动。我们假设,用于ML模型训练和应用的软件基础设施能够支持模型训练的改进,并为理解与分类相关的数据特征提供相关信息。所提出的解决方案支持对基于机器学习的多模态数据解读方法进行迭代训练、评估和探索,该方法考虑了心脏磁共振成像(MRI)数据。通过专用的交互式视觉分析工具支持临床数据的校正、标注和探索以及结果解读。我们使用来自ACDC和EMIDEC心脏MRI图像分析挑战的两个用例来测试所提出的概念。在这两个应用中,预训练的二维U-Net用于分割,并使用分割后的解剖结构的放射组学特征训练分类器用于诊断任务。该解决方案成功用于识别自动分割和图像采集中的异常值。有针对性的管理和添加专家标注提高了机器学习模型的性能。支持临床专家理解所分配疾病类别的特定解剖和功能特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/4ff04f4c015d/fcvm-09-829512-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/d3d3846e6d73/fcvm-09-829512-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/1860915b62da/fcvm-09-829512-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/8d73210a162e/fcvm-09-829512-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/6fbd6f4008df/fcvm-09-829512-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/ab29f8d8b15d/fcvm-09-829512-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/767c3934c3e6/fcvm-09-829512-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/7653eee904ae/fcvm-09-829512-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/b6b4fee726f6/fcvm-09-829512-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/9efe01bba4bb/fcvm-09-829512-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/2ac993ad41af/fcvm-09-829512-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/4ff04f4c015d/fcvm-09-829512-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/d3d3846e6d73/fcvm-09-829512-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/1860915b62da/fcvm-09-829512-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/8d73210a162e/fcvm-09-829512-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/6fbd6f4008df/fcvm-09-829512-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/ab29f8d8b15d/fcvm-09-829512-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/767c3934c3e6/fcvm-09-829512-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/7653eee904ae/fcvm-09-829512-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/b6b4fee726f6/fcvm-09-829512-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/9efe01bba4bb/fcvm-09-829512-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/2ac993ad41af/fcvm-09-829512-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a7e/8960112/4ff04f4c015d/fcvm-09-829512-g0011.jpg

相似文献

[1]
A Collaborative Approach for the Development and Application of Machine Learning Solutions for CMR-Based Cardiac Disease Classification.

Front Cardiovasc Med. 2022-3-10

[2]
An extensible software platform for interdisciplinary cardiovascular imaging research.

Comput Methods Programs Biomed. 2020-2

[3]
Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation.

Med Image Anal. 2019-5-25

[4]
Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection.

Comput Biol Med. 2022-2

[5]
User-Accessible Machine Learning Approaches for Cell Segmentation and Analysis in Tissue.

Front Physiol. 2022-3-10

[6]
Feasibility on the Use of Radiomics Features of 11[C]-MET PET/CT in Central Nervous System Tumours: Preliminary Results on Potential Grading Discrimination Using a Machine Learning Model.

Curr Oncol. 2021-12-12

[7]
Automatic cardiac cine MRI segmentation and heart disease classification.

Comput Med Imaging Graph. 2021-3

[8]
A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.

Comput Methods Programs Biomed. 2018-6-26

[9]
Interactive Machine Learning by Visualization: A Small Data Solution.

Proc IEEE Int Conf Big Data. 2018-12

[10]
Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.

J Biomed Inform. 2018-7-17

引用本文的文献

[1]
A hybrid segmentation and classification CAD framework for automated myocardial infarction prediction from MRI images.

Sci Rep. 2025-4-23

[2]
Heart failure with preserved ejection fraction: diagnosis, risk assessment, and treatment.

Clin Res Cardiol. 2024-9

[3]
Towards automatic classification of cardiovascular magnetic resonance Task Force Criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy.

Clin Res Cardiol. 2023-3

本文引用的文献

[1]
GUCCI - Guided Cardiac Cohort Investigation of Blood Flow Data.

IEEE Trans Vis Comput Graph. 2023-3

[2]
Explainable Deep Learning Models in Medical Image Analysis.

J Imaging. 2020-6-20

[3]
A User Interface for Optimizing Radiologist Engagement in Image Data Curation for Artificial Intelligence.

Radiol Artif Intell. 2019-11-27

[4]
Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: systematic review of validity and clinical utility.

BMC Med. 2021-4-6

[5]
Applications of artificial intelligence in cardiovascular imaging.

Nat Rev Cardiol. 2021-8

[6]
Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools.

Phys Med. 2021-3

[7]
The International Radiomics Platform - An Initiative of the German and Austrian Radiological Societies - First Application Examples.

Rofo. 2021-3

[8]
Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank.

Front Cardiovasc Med. 2020-11-2

[9]
Joint Imaging Platform for Federated Clinical Data Analytics.

JCO Clin Cancer Inform. 2020-11

[10]
Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance.

Cardiol Res Pract. 2020-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索