Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany.
German Cancer Consortium, Heidelberg, Germany.
JCO Clin Cancer Inform. 2020 Nov;4:1027-1038. doi: 10.1200/CCI.20.00045.
Image analysis is one of the most promising applications of artificial intelligence (AI) in health care, potentially improving prediction, diagnosis, and treatment of diseases. Although scientific advances in this area critically depend on the accessibility of large-volume and high-quality data, sharing data between institutions faces various ethical and legal constraints as well as organizational and technical obstacles.
The Joint Imaging Platform (JIP) of the German Cancer Consortium (DKTK) addresses these issues by providing federated data analysis technology in a secure and compliant way. Using the JIP, medical image data remain in the originator institutions, but analysis and AI algorithms are shared and jointly used. Common standards and interfaces to local systems ensure permanent data sovereignty of participating institutions.
The JIP is established in the radiology and nuclear medicine departments of 10 university hospitals in Germany (DKTK partner sites). In multiple complementary use cases, we show that the platform fulfills all relevant requirements to serve as a foundation for multicenter medical imaging trials and research on large cohorts, including the harmonization and integration of data, interactive analysis, automatic analysis, federated machine learning, and extensibility and maintenance processes, which are elementary for the sustainability of such a platform.
The results demonstrate the feasibility of using the JIP as a federated data analytics platform in heterogeneous clinical information technology and software landscapes, solving an important bottleneck for the application of AI to large-scale clinical imaging data.
人工智能(AI)在医疗保健领域的最有前途的应用之一是图像分析,它有可能改善疾病的预测、诊断和治疗。尽管该领域的科学进步严重依赖于大容量和高质量数据的可及性,但机构之间的数据共享面临着各种伦理和法律限制以及组织和技术障碍。
德国癌症联合会(DKTK)的联合成像平台(JIP)通过以安全和合规的方式提供联邦数据分析技术来解决这些问题。使用 JIP,医学图像数据仍保留在原始机构中,但分析和 AI 算法是共享和共同使用的。与本地系统的通用标准和接口确保了参与机构的数据主权永久化。
JIP 已在德国 10 所大学医院的放射科和核医学部门(DKTK 合作站点)建立。在多个互补的用例中,我们证明该平台满足作为多中心医学成像试验和大型队列研究的基础的所有相关要求,包括数据的协调和整合、交互式分析、自动分析、联合机器学习以及可扩展性和维护流程,这些都是此类平台可持续性的基本要求。
结果表明,使用 JIP 作为异构临床信息技术和软件环境中的联邦数据分析平台是可行的,解决了将 AI 应用于大规模临床成像数据的重要瓶颈问题。