Suppr超能文献

基于机器学习算法的男性精神分裂症患者暴力行为的预测及影响因素

The Prediction and Influential Factors of Violence in Male Schizophrenia Patients With Machine Learning Algorithms.

作者信息

Yu Tao, Zhang Xulai, Liu Xiuyan, Xu Chunyuan, Deng Chenchen

机构信息

Anhui Mental Health Center, Hefei Fourth People's Hospital, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.

Anhui Province Maternity and Child Health Hospital, Hefei, China.

出版信息

Front Psychiatry. 2022 Mar 11;13:799899. doi: 10.3389/fpsyt.2022.799899. eCollection 2022.

Abstract

BACKGROUND

Early to identify male schizophrenia patients with violence is important for the performance of targeted measures and closer monitoring, but it is difficult to use conventional risk factors. This study is aimed to employ machine learning (ML) algorithms combined with routine data to predict violent behavior among male schizophrenia patients. Moreover, the identified best model might be utilized to calculate the probability of an individual committing violence.

METHOD

We enrolled a total of 397 male schizophrenia patients and randomly stratified them into the training set and the testing set, in a 7:3 ratio. We used eight ML algorithms to develop the predictive models. The main variables as input features selected by the least absolute shrinkage and selection operator (LASSO) and logistic regression (LR) were integrated into prediction models for violence among male schizophrenia patients. In the training set, 10 × 10-fold cross-validation was conducted to adjust the parameters. In the testing set, we evaluated and compared the predictive performance of eight ML algorithms in terms of area under the curve (AUC) for the receiver operating characteristic curve.

RESULT

Our results showed the prevalence of violence among male schizophrenia patients was 36.8%. The LASSO and LR identified main risk factors for violent behavior in patients with schizophrenia integrated into the predictive models, including lower education level [0.556 (0.378-0.816)], having cigarette smoking [2.121 (1.191-3.779)], higher positive syndrome [1.016 (1.002-1.031)] and higher social disability screening schedule (SDSS) [1.081 (1.026-1.139)]. The Neural Net (nnet) with an AUC of 0.6673 (0.5599-0.7748) had better prediction ability than that of other algorithms.

CONCLUSION

ML algorithms are useful in early identifying male schizophrenia patients with violence and helping clinicians take preventive measures.

摘要

背景

早期识别有暴力行为的男性精神分裂症患者对于采取针对性措施和加强监测很重要,但使用传统风险因素存在困难。本研究旨在采用机器学习(ML)算法结合常规数据来预测男性精神分裂症患者的暴力行为。此外,识别出的最佳模型可用于计算个体实施暴力行为的概率。

方法

我们共纳入397例男性精神分裂症患者,并按7:3的比例将他们随机分层为训练集和测试集。我们使用八种ML算法来开发预测模型。通过最小绝对收缩和选择算子(LASSO)和逻辑回归(LR)选择的主要变量作为输入特征,被纳入男性精神分裂症患者暴力行为的预测模型。在训练集中,进行10×10折交叉验证以调整参数。在测试集中,我们根据受试者工作特征曲线的曲线下面积(AUC)评估并比较了八种ML算法的预测性能。

结果

我们的结果显示男性精神分裂症患者的暴力行为发生率为36.8%。LASSO和LR识别出的精神分裂症患者暴力行为的主要风险因素被纳入预测模型,包括较低的教育水平[0.556(0.378 - 0.816)]、吸烟[2.121(1.191 - 3.779)]、较高的阳性症状[1.016(1.002 - 1.031)]和较高的社会残疾筛查量表(SDSS)评分[1.081(1.026 - 1.139)]。曲线下面积(AUC)为0.6673(0.5599 - 0.7748)的神经网络(nnet)算法比其他算法具有更好的预测能力。

结论

ML算法有助于早期识别有暴力行为的男性精神分裂症患者,并帮助临床医生采取预防措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e4e/8962616/04bfb39506e7/fpsyt-13-799899-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验