Suppr超能文献

为什么用户生成内容如此多样?基于求新理论和主题建模的解释。

Why Are User-Generated Contents So Varied? An Explanation Based on Variety-Seeking Theory and Topic Modeling.

作者信息

Xiang Weilin, Ma Yongbin, Liu Dewen, Zhang Sikang

机构信息

College of Business, Shanghai University of Finance and Economics, Shanghai, China.

Business School, Ningbo University, Ningbo, China.

出版信息

Front Psychol. 2022 Mar 10;13:808785. doi: 10.3389/fpsyg.2022.808785. eCollection 2022.

Abstract

In online communities, such as Twitter, Facebook, or Reddit, millions of pieces of contents are generated by users every day, and these user-generated contents (UGCs) show a great variety of topics discussed that make the online community vivid and attractive. However, the reasons why UGCs show great variety and how a firm can influence this variety was unknown, which had been an obstacle to understanding and managing UGCs' variety. This study fills these two gaps based on variety-seeking theory and topic modeling, which is a technique in machine learning. We extract, quantitatively, the topic of the UGCs using topic modeling and divide UGCs into two types: single topic and multiple topics. The user's tendency to choose the type of UGC is used to measure variety-seeking behavior. We found that users have an intrinsic preference for variety when producing UGCs; the more single topic UGCs were produced in the past, the higher the probability of producing multiple topics UGC and the lower the probability of producing single topic UGC would be in the next, and vice versa. Furthermore, we discussed the effect of language/linguistic style matching (LSM) between firm feedbacks and UGCs on users' variety-seeking tendencies in UGCs' production. This study makes three contributions: (1) broadening variety-seeking theory to new behavior, that is content production behavior, and the results demonstrated that people would show a variety-seeking behavior in producing UGCs. (2) a new feasible method to measure the variety of UGCs by using topic modeling to extract the topics of UGCs and then measure the variety-seeking behavior in producing UGCs by analyzing the choice between single topic and multiple topics. (3) guidance for the firm to alter LSM of feedbacks to influence the variety of UGCs.

摘要

在诸如推特、脸书或红迪网等在线社区中,用户每天都会生成数百万条内容,这些用户生成内容(UGC)呈现出各种各样被讨论的话题,使得在线社区生动且有吸引力。然而,UGC呈现出多样性的原因以及企业如何影响这种多样性尚不清楚,这一直是理解和管理UGC多样性的障碍。本研究基于求新理论和主题建模填补了这两个空白,主题建模是机器学习中的一种技术。我们使用主题建模定量提取UGC的主题,并将UGC分为两种类型:单一主题和多个主题。用户选择UGC类型的倾向用于衡量求新行为。我们发现,用户在生成UGC时对多样性有内在偏好;过去生成的单一主题UGC越多,下一次生成多个主题UGC的概率就越高,而生成单一主题UGC的概率就越低,反之亦然。此外,我们还讨论了企业反馈与UGC之间的语言/语言风格匹配(LSM)对用户在UGC生成中求新倾向的影响。本研究有三个贡献:(1)将求新理论扩展到新的行为,即内容生产行为,结果表明人们在生成UGC时会表现出求新行为。(2)一种新的可行方法,通过使用主题建模提取UGC的主题来衡量UGC的多样性,然后通过分析单一主题和多个主题之间的选择来衡量UGC生成中的求新行为。(3)为企业改变反馈的LSM以影响UGC的多样性提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9552/8960714/bfe2686e275c/fpsyg-13-808785-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验