Suppr超能文献

双极磁性半导体的高通量计算筛选

High-Throughput Computational Screening for Bipolar Magnetic Semiconductors.

作者信息

Wang Haidi, Feng Qingqing, Li Xingxing, Yang Jinlong

机构信息

School of Physics, Hefei University of Technology, Hefei, Anhui 230601, China.

Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Research (Wash D C). 2022 Mar 15;2022:9857631. doi: 10.34133/2022/9857631. eCollection 2022.

Abstract

Searching ferromagnetic semiconductor materials with electrically controllable spin polarization is a long-term challenge for spintronics. Bipolar magnetic semiconductors (BMS), with valence and conduction band edges fully spin polarized in different spin directions, show great promise in this aspect because the carrier spin polarization direction can be easily tuned by voltage gate. Here, we propose a standard high-throughput computational screening scheme for searching BMS materials. The application of this scheme to the Materials Project database gives 11 intrinsic BMS materials (1 experimental and 10 theoretical) from nearly ~40000 structures. Among them, a room-temperature BMS LiVTeO (mp-771246) is discovered with a Curie temperature of 478 K. Moreover, the BMS feature can be maintained well when cutting the bulk LiVTeO into (001) nanofilms for realistic applications. This work provides a feasible solution for discovering novel intrinsic BMS materials from various crystal structure databases, paving the way for realizing electric-field controlled spintronics devices.

摘要

寻找具有电可控自旋极化的铁磁半导体材料是自旋电子学领域长期面临的挑战。双极磁性半导体(BMS)的价带和导带边缘在不同自旋方向上完全自旋极化,在这方面显示出巨大潜力,因为载流子自旋极化方向可通过电压门轻松调节。在此,我们提出一种用于搜索BMS材料的标准高通量计算筛选方案。将该方案应用于材料项目数据库,从近40000个结构中得到11种本征BMS材料(1种实验材料和10种理论材料)。其中,发现了一种室温BMS材料LiVTeO(mp-771246),其居里温度为478K。此外,将块状LiVTeO切割成(001)纳米薄膜用于实际应用时,BMS特性能够得到很好的保持。这项工作为从各种晶体结构数据库中发现新型本征BMS材料提供了一种可行的解决方案,为实现电场控制的自旋电子器件铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318e/8943632/d56611f963d2/RESEARCH2022-9857631.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验