Suppr超能文献

μMap-Red:红光光催化的邻近标记。

μMap-Red: Proximity Labeling by Red Light Photocatalysis.

机构信息

Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States.

Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States.

出版信息

J Am Chem Soc. 2022 Apr 13;144(14):6154-6162. doi: 10.1021/jacs.2c01384. Epub 2022 Apr 1.

Abstract

Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited Sn chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling through several layers of tissue, and we then apply our platform to label microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.

摘要

现代接近标记技术使人们对生物分子相互作用的理解取得了重大进展。然而,当前的工具主要利用与复杂生物环境不兼容的激活模式,限制了我们在动物模型中研究细胞和组织水平微环境的能力。在这里,我们报告了 μMap-Red,这是一种接近标记平台,它使用红光激发的 Sn 叶绿素 e6 催化剂来激活苯甲酰叠氮生物素探针。我们通过证明通过几层组织进行光控蛋白质标记来验证 μMap-Red,然后我们将我们的平台应用于标记微环境,并使用 STED 显微镜和定量蛋白质组学验证性能。最后,为了在复杂的生物样本中证明标记,我们在整个小鼠血液中部署 μMap-Red 以分析红细胞表面蛋白。这项工作代表了在复杂组织环境和动物模型中进行基于光的接近标记的重大方法学进展。

相似文献

1
μMap-Red: Proximity Labeling by Red Light Photocatalysis.
J Am Chem Soc. 2022 Apr 13;144(14):6154-6162. doi: 10.1021/jacs.2c01384. Epub 2022 Apr 1.
2
Proximity labeling expansion microscopy (PL-ExM) evaluates interactome labeling techniques.
J Mater Chem B. 2024 Aug 28;12(34):8335-8348. doi: 10.1039/d4tb00516c.
3
Proteomic Proximity Labeling to Reveal Interactions Between Biomolecules.
Methods Mol Biol. 2019;2008:13-28. doi: 10.1007/978-1-4939-9537-0_2.
4
APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics.
Methods Mol Biol. 2019;2008:41-55. doi: 10.1007/978-1-4939-9537-0_4.
5
Proximity Labeling and Proteomics: Get to Know Neighbors.
Methods Enzymol. 2023;679:131-162. doi: 10.1016/bs.mie.2022.07.031. Epub 2022 Sep 2.
7
Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.
Nat Methods. 2023 Jun;20(6):908-917. doi: 10.1038/s41592-023-01880-5. Epub 2023 May 15.
8
Proteomic navigation using proximity-labeling.
Methods. 2019 Jul 15;164-165:67-72. doi: 10.1016/j.ymeth.2019.03.028. Epub 2019 Apr 4.
9
Biotinylation by antibody recognition-a method for proximity labeling.
Nat Methods. 2018 Feb;15(2):127-133. doi: 10.1038/nmeth.4533. Epub 2017 Dec 18.
10
Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool.
Proteomics. 2017 Oct;17(20). doi: 10.1002/pmic.201700002. Epub 2017 Apr 10.

引用本文的文献

1
Amplifying antigen-induced cellular responses with proximity labelling.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09518-6.
3
4
Bridging molecular and cellular neuroscience with proximity labeling technologies.
Exp Mol Med. 2025 Jul 10. doi: 10.1038/s12276-025-01491-4.
5
μMap-FFPE: A High-Resolution Protein Proximity Labeling Platform for Formalin-Fixed Paraffin-Embedded Tissue Samples.
J Am Chem Soc. 2025 Jul 9;147(27):23387-23394. doi: 10.1021/jacs.5c06489. Epub 2025 Jun 25.
6
Peptide-Carbazolyl Cyanobenzene Conjugates: Enabling Biomolecule Functionalization via Photoredox and Energy Transfer Catalysis.
Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202507602. doi: 10.1002/anie.202507602. Epub 2025 Jun 30.
8
Red-Light-Mediated Generation of Radicals: Applications in Organic Synthesis, Small-Molecule Activation, Polymerization, and Bio-Related Fields.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202501194. doi: 10.1002/anie.202501194. Epub 2025 Jun 29.
9
Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains.
ACS Pharmacol Transl Sci. 2025 Mar 14;8(4):978-1012. doi: 10.1021/acsptsci.4c00726. eCollection 2025 Apr 11.
10
Advances in the chemical synthesis of human proteoforms.
Sci China Life Sci. 2025 Apr 8. doi: 10.1007/s11427-024-2860-5.

本文引用的文献

1
Tracking chromatin state changes using nanoscale photo-proximity labelling.
Nature. 2023 Apr;616(7957):574-580. doi: 10.1038/s41586-023-05914-y. Epub 2023 Apr 5.
2
Targeted activation in localized protein environments via deep red photoredox catalysis.
Nat Chem. 2023 Jan;15(1):101-109. doi: 10.1038/s41557-022-01057-1. Epub 2022 Oct 10.
3
Small molecule photocatalysis enables drug target identification via energy transfer.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2208077119. doi: 10.1073/pnas.2208077119. Epub 2022 Aug 15.
4
Detection of cell-cell interactions via photocatalytic cell tagging.
Nat Chem Biol. 2022 Aug;18(8):850-858. doi: 10.1038/s41589-022-01044-0. Epub 2022 Jun 2.
5
Selective Mitochondrial Protein Labeling Enabled by Biocompatible Photocatalytic Reactions inside Live Cells.
JACS Au. 2021 Jun 14;1(7):1066-1075. doi: 10.1021/jacsau.1c00172. eCollection 2021 Jul 26.
6
Reactive intermediates for interactome mapping.
Chem Soc Rev. 2021 Mar 7;50(5):2911-2926. doi: 10.1039/d0cs01366h. Epub 2021 Jan 18.
7
Deciphering molecular interactions by proximity labeling.
Nat Methods. 2021 Feb;18(2):133-143. doi: 10.1038/s41592-020-01010-5. Epub 2021 Jan 11.
8
Microenvironment mapping via Dexter energy transfer on immune cells.
Science. 2020 Mar 6;367(6482):1091-1097. doi: 10.1126/science.aay4106.
9
Mechanism of adrenergic Ca1.2 stimulation revealed by proximity proteomics.
Nature. 2020 Jan;577(7792):695-700. doi: 10.1038/s41586-020-1947-z. Epub 2020 Jan 22.
10
Atlas of Subcellular RNA Localization Revealed by APEX-Seq.
Cell. 2019 Jul 11;178(2):473-490.e26. doi: 10.1016/j.cell.2019.05.027. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验