Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States.
Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States.
J Am Chem Soc. 2022 Apr 13;144(14):6154-6162. doi: 10.1021/jacs.2c01384. Epub 2022 Apr 1.
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited Sn chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling through several layers of tissue, and we then apply our platform to label microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
现代接近标记技术使人们对生物分子相互作用的理解取得了重大进展。然而,当前的工具主要利用与复杂生物环境不兼容的激活模式,限制了我们在动物模型中研究细胞和组织水平微环境的能力。在这里,我们报告了 μMap-Red,这是一种接近标记平台,它使用红光激发的 Sn 叶绿素 e6 催化剂来激活苯甲酰叠氮生物素探针。我们通过证明通过几层组织进行光控蛋白质标记来验证 μMap-Red,然后我们将我们的平台应用于标记微环境,并使用 STED 显微镜和定量蛋白质组学验证性能。最后,为了在复杂的生物样本中证明标记,我们在整个小鼠血液中部署 μMap-Red 以分析红细胞表面蛋白。这项工作代表了在复杂组织环境和动物模型中进行基于光的接近标记的重大方法学进展。