Department of Biology, Wake Forest University, Winston-Salem, NC 27109.
Department of Biology, East Carolina University, Greenville, NC 27858.
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2119671119. doi: 10.1073/pnas.2119671119. Epub 2022 Apr 1.
Identifying the molecular process of complex trait evolution is a core goal of biology. However, pinpointing the specific context and timing of trait-associated changes within the molecular evolutionary history of an organism remains an elusive goal. We study this topic by exploring the molecular basis of elaborate courtship evolution, which represents an extraordinary example of trait innovation. Within the behaviorally diverse radiation of Central and South American manakin birds, species from two separate lineages beat their wings together using specialized “superfast” muscles to generate a “snap” that helps attract mates. Here, we develop an empirical approach to analyze phylogenetic lineage-specific shifts in gene expression in the key snap-performing muscle and then integrate these findings with comparative transcriptomic sequence analysis. We find that rapid wing displays are associated with changes to a wide range of molecular processes that underlie extreme muscle performance, including changes to calcium trafficking, myocyte homeostasis and metabolism, and hormone action. We furthermore show that these changes occur gradually in a layered manner across the species history, wherein which ancestral genetic changes to many of these molecular systems are built upon by later species-specific shifts that likely finalized the process of display performance adaptation. Our study demonstrates the potential for combining phylogenetic modeling of tissue-specific gene expression shifts with phylogenetic analysis of lineage-specific sequence changes to reveal holistic evolutionary histories of complex traits.
确定复杂性状进化的分子过程是生物学的核心目标。然而,确定生物体分子进化历史中与性状相关变化的具体背景和时间仍然是一个难以捉摸的目标。我们通过探索精心设计的求偶行为进化的分子基础来研究这个课题,这代表了性状创新的一个非凡例子。在中美洲和南美洲的凤冠雉鸟类行为多样化的辐射中,来自两个不同谱系的物种使用专门的“超快”肌肉一起拍打翅膀,产生一种“噼啪”声,有助于吸引配偶。在这里,我们开发了一种经验方法来分析关键发声肌肉中基因表达的系统发育谱系特异性变化,然后将这些发现与比较转录组序列分析相结合。我们发现,快速的翅膀展示与广泛的分子过程变化有关,这些过程是极端肌肉性能的基础,包括钙运输、肌细胞稳态和代谢以及激素作用的变化。我们还表明,这些变化在物种历史中以分层的方式逐渐发生,其中许多这些分子系统的祖先遗传变化是由后来的物种特异性变化构建的,这些变化可能最终完成了展示性能适应的过程。我们的研究表明,将组织特异性基因表达变化的系统发育建模与谱系特异性序列变化的系统发育分析相结合,有可能揭示复杂性状的整体进化历史。