Suppr超能文献

利用临床MRI最大强度投影结合深度卷积神经网络改善乳腺病变分类

Use of clinical MRI maximum intensity projections for improved breast lesion classification with deep convolutional neural networks.

作者信息

Antropova Natalia, Abe Hiroyuki, Giger Maryellen L

机构信息

The University of Chicago, Department of Radiology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2018 Jan;5(1):014503. doi: 10.1117/1.JMI.5.1.014503. Epub 2018 Feb 5.

Abstract

Deep learning methods have been shown to improve breast cancer diagnostic and prognostic decisions based on selected slices of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). However, incorporation of volumetric and temporal components into DCE-MRIs has not been well studied. We propose maximum intensity projection (MIP) images of subtraction MRI as a way to simultaneously include four-dimensional (4-D) images into lesion classification using convolutional neural networks (CNN). The study was performed on a dataset of 690 cases. Regions of interest were selected around each lesion on three MRI presentations: (i) the MIP image generated on the second postcontrast subtraction MRI, (ii) the central slice of the second postcontrast MRI, and (iii) the central slice of the second postcontrast subtraction MRI. CNN features were extracted from the ROIs using pretrained VGGNet. The features were utilized in the training of three support vector machine classifiers to characterize lesions as malignant or benign. Classifier performances were evaluated with fivefold cross-validation and compared based on area under the ROC curve (AUC). The approach using MIPs [Formula: see text] outperformed that using central-slices of either second postcontrast MRIs [Formula: see text] or second postcontrast subtraction MRIs [Formula: see text], at statistically significant levels.

摘要

深度学习方法已被证明可基于动态对比增强磁共振成像(DCE-MRI)的选定切片改善乳腺癌的诊断和预后决策。然而,将体积和时间成分纳入DCE-MRI的研究尚不充分。我们提出用减法MRI的最大强度投影(MIP)图像,作为一种使用卷积神经网络(CNN)将四维(4-D)图像同时纳入病变分类的方法。该研究在一个包含690例病例的数据集上进行。在三种MRI图像上围绕每个病变选择感兴趣区域:(i)第二次对比剂注射后减法MRI生成的MIP图像,(ii)第二次对比剂注射后MRI的中心切片,以及(iii)第二次对比剂注射后减法MRI的中心切片。使用预训练的VGGNet从感兴趣区域提取CNN特征。这些特征用于训练三个支持向量机分类器,以将病变表征为恶性或良性。通过五折交叉验证评估分类器性能,并基于ROC曲线下面积(AUC)进行比较。使用MIP的方法[公式:见正文]在统计学显著水平上优于使用第二次对比剂注射后MRI的中心切片[公式:见正文]或第二次对比剂注射后减法MRI的中心切片[公式:见正文]的方法。

相似文献

引用本文的文献

4
Machine learning and new insights for breast cancer diagnosis.用于乳腺癌诊断的机器学习与新见解
J Int Med Res. 2024 Apr;52(4):3000605241237867. doi: 10.1177/03000605241237867.
5
AI Applications to Breast MRI: Today and Tomorrow.人工智能在乳腺 MRI 中的应用:今天和明天。
J Magn Reson Imaging. 2024 Dec;60(6):2290-2308. doi: 10.1002/jmri.29358. Epub 2024 Apr 5.
10
A Survey of Convolutional Neural Network in Breast Cancer.乳腺癌中卷积神经网络的综述
Comput Model Eng Sci. 2023 Mar 9;136(3):2127-2172. doi: 10.32604/cmes.2023.025484.

本文引用的文献

4
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment.动态对比增强 MRI 在癌症诊断和治疗中的作用。
Diagn Interv Radiol. 2010 Sep;16(3):186-92. doi: 10.4261/1305-3825.DIR.2537-08.1. Epub 2009 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验