Antropova Natalia, Abe Hiroyuki, Giger Maryellen L
The University of Chicago, Department of Radiology, Chicago, Illinois, United States.
J Med Imaging (Bellingham). 2018 Jan;5(1):014503. doi: 10.1117/1.JMI.5.1.014503. Epub 2018 Feb 5.
Deep learning methods have been shown to improve breast cancer diagnostic and prognostic decisions based on selected slices of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). However, incorporation of volumetric and temporal components into DCE-MRIs has not been well studied. We propose maximum intensity projection (MIP) images of subtraction MRI as a way to simultaneously include four-dimensional (4-D) images into lesion classification using convolutional neural networks (CNN). The study was performed on a dataset of 690 cases. Regions of interest were selected around each lesion on three MRI presentations: (i) the MIP image generated on the second postcontrast subtraction MRI, (ii) the central slice of the second postcontrast MRI, and (iii) the central slice of the second postcontrast subtraction MRI. CNN features were extracted from the ROIs using pretrained VGGNet. The features were utilized in the training of three support vector machine classifiers to characterize lesions as malignant or benign. Classifier performances were evaluated with fivefold cross-validation and compared based on area under the ROC curve (AUC). The approach using MIPs [Formula: see text] outperformed that using central-slices of either second postcontrast MRIs [Formula: see text] or second postcontrast subtraction MRIs [Formula: see text], at statistically significant levels.
深度学习方法已被证明可基于动态对比增强磁共振成像(DCE-MRI)的选定切片改善乳腺癌的诊断和预后决策。然而,将体积和时间成分纳入DCE-MRI的研究尚不充分。我们提出用减法MRI的最大强度投影(MIP)图像,作为一种使用卷积神经网络(CNN)将四维(4-D)图像同时纳入病变分类的方法。该研究在一个包含690例病例的数据集上进行。在三种MRI图像上围绕每个病变选择感兴趣区域:(i)第二次对比剂注射后减法MRI生成的MIP图像,(ii)第二次对比剂注射后MRI的中心切片,以及(iii)第二次对比剂注射后减法MRI的中心切片。使用预训练的VGGNet从感兴趣区域提取CNN特征。这些特征用于训练三个支持向量机分类器,以将病变表征为恶性或良性。通过五折交叉验证评估分类器性能,并基于ROC曲线下面积(AUC)进行比较。使用MIP的方法[公式:见正文]在统计学显著水平上优于使用第二次对比剂注射后MRI的中心切片[公式:见正文]或第二次对比剂注射后减法MRI的中心切片[公式:见正文]的方法。