Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, USA.
Department of Biomedical Engineering, The City College of New York, NY, USA.
Brain Stimul. 2022 May-Jun;15(3):624-634. doi: 10.1016/j.brs.2022.03.007. Epub 2022 Mar 31.
A key outcome for spinal cord stimulation for neurorehabilitation after injury is to strengthen corticospinal system control of the arm and hand. Non-invasive, compared with invasive, spinal stimulation minimizes risk but depends on muscle-specific actions for restorative functions.
We developed a large-animal (cat) model, combining computational and experimental techniques, to characterize neuromodulation with transcutaneous spinal direct current stimulation (tsDCS) for facilitation of corticospinal motor drive to specific forelimb muscles.
Acute modulation of corticospinal function by tsDCS was measured using motor cortex-evoked muscle potentials (MEPs). The effects of current intensity, polarity (cathodal, anodal), and electrode position on specific forelimb muscle (biceps vs extensor carpi radialis, ECR) MEP modulation were examined. Locations of a key target, the motoneuron pools, were determined using neuronal tracing. A high-resolution anatomical (MRI and CT) model was developed for computational simulation of spinal current flow during tsDCS.
Effects of tsDCS on corticospinal excitability were robust and immediate, therefore supporting MEPs as a sensitive marker of tsDCS targeting. Varying cathodal/anodal current intensity modulated MEP enhancement/suppression, with higher cathodal sensitivity. Muscle-specificity depended on cathode position; the rostral position preferentially augmented biceps responses and the caudal position, ECR responses. Precise anatomical current-flow modeling, supplemented with target motor pool distributions, can explain tsDCS focality on muscle groups.
Anatomical current-flow modeling with physiological validation based on MEPs provides a framework to optimize muscle-specific tsDCS interventions. tsDCS targeting of representative motor pools enables muscle- and response-specific neuromodulation of corticospinal motor drive.
脊髓刺激在神经康复中的一个关键结果是增强手臂和手的皮质脊髓系统控制。与侵入性刺激相比,非侵入性脊髓刺激最大限度地降低了风险,但依赖于肌肉特异性动作来实现恢复功能。
我们开发了一种大型动物(猫)模型,结合计算和实验技术,对经皮脊髓直流电刺激(tsDCS)的神经调节进行特征描述,以促进皮质脊髓运动驱动到特定的前肢肌肉。
使用运动皮层诱发电位(MEPs)测量 tsDCS 对皮质脊髓功能的急性调节。研究了电流强度、极性(阴极、阳极)和电极位置对特定前肢肌肉(肱二头肌与桡侧腕伸肌,ECR)MEP 调节的影响。使用神经元示踪技术确定了一个关键靶点,即运动神经元池的位置。为了计算 tsDCS 期间脊髓电流流动,开发了一个高分辨率的解剖(MRI 和 CT)模型。
tsDCS 对皮质脊髓兴奋性的影响是强大而即时的,因此支持 MEPs 作为 tsDCS 靶向的敏感标志物。阴极/阳极电流强度的变化调节 MEP 增强/抑制,阴极敏感性更高。肌肉特异性取决于阴极位置;颅侧位置优先增强肱二头肌反应,而尾侧位置增强 ECR 反应。精确的解剖电流流动建模,辅以目标运动池分布,可以解释 tsDCS 对肌肉群的聚焦。
基于 MEPs 的生理验证的解剖电流流动建模为优化肌肉特异性 tsDCS 干预提供了框架。代表运动池的 tsDCS 靶向使皮质脊髓运动驱动的肌肉和反应特异性神经调节成为可能。