Suppr超能文献

MC-ViViT:用于通过面部视频检测老年人轻度认知障碍的多分支分类器-ViViT

MC-ViViT: Multi-branch Classifier-ViViT to Detect Mild Cognitive Impairment in Older Adults Using Facial Videos.

作者信息

Sun Jian, Dodge Hiroko H, Mahoor Mohammad H

机构信息

Department Of Computer Science, University of Denver, 2155 E Wesley Ave, Denver, Colorado, 80210, United States of America.

Department Of Neurology at Harvard Medical School, Harvard University, Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts, 02114, United States of America.

出版信息

Expert Syst Appl. 2024 Mar 15;238(Pt B). doi: 10.1016/j.eswa.2023.121929. Epub 2023 Oct 4.

Abstract

Deep machine learning models including Convolutional Neural Networks (CNN) have been successful in the detection of Mild Cognitive Impairment (MCI) using medical images, questionnaires, and videos. This paper proposes a novel Multi-branch Classifier-Video Vision Transformer (MC-ViViT) model to distinguish MCI from those with normal cognition by analyzing facial features. The data comes from the I-CONECT, a behavioral intervention trial aimed at improving cognitive function by providing frequent video chats. MC-ViViT extracts spatiotemporal features of videos in one branch and augments representations by the MC module. The I-CONECT dataset is challenging as the dataset is imbalanced containing Hard-Easy and Positive-Negative samples, which impedes the performance of MC-ViViT. We propose a loss function for Hard-Easy and Positive-Negative Samples (HP Loss) by combining Focal loss and AD-CORRE loss to address the imbalanced problem. Our experimental results on the I-CONECT dataset show the great potential of MC-ViViT in predicting MCI with a high accuracy of 90.63% accuracy on some of the interview videos.

摘要

包括卷积神经网络(CNN)在内的深度机器学习模型,在利用医学图像、问卷和视频检测轻度认知障碍(MCI)方面取得了成功。本文提出了一种新颖的多分支分类器-视频视觉变换器(MC-ViViT)模型,通过分析面部特征来区分MCI患者和认知正常者。数据来自I-CONECT,这是一项旨在通过频繁视频聊天改善认知功能的行为干预试验。MC-ViViT在一个分支中提取视频的时空特征,并通过MC模块增强特征表示。I-CONECT数据集具有挑战性,因为该数据集不均衡,包含难易样本和正负样本,这影响了MC-ViViT的性能。我们通过结合焦点损失和AD-CORRE损失,提出了一种针对难易样本和正负样本的损失函数(HP损失),以解决不均衡问题。我们在I-CONECT数据集上的实验结果表明,MC-ViViT在预测MCI方面具有巨大潜力,在一些访谈视频上的准确率高达90.63%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a214/11375964/0629645feef5/nihms-1996219-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验