Department of Computer Science and Engineering, Dr. A.P.J Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India.
Department of Computer Science and Engineering, B.I.E.T., Jhansi, Uttar Pradesh, India.
J Healthc Eng. 2022 Mar 30;2022:9009406. doi: 10.1155/2022/9009406. eCollection 2022.
This article addresses automated segmentation and classification of COVID-19 and normal chest CT scan images. Segmentation is the preprocessing step for classification, and 12 DWT-PCA-based texture features extracted from the segmented image are utilized as input for the random forest machine-learning algorithm to classify COVID-19/non-COVID-19 disease. Diagnosing COVID-19 disease through an RT-PCR test is a time-consuming process. Sometimes, the RT-PCR test result is not accurate; that is, it has a false negative, which can cause a threat to the person's life due to delay in starting the specified treatment. At this moment, there is an urgent need to develop a reliable automatic COVID-19 detection tool that can detect COVID-19 disease from chest CT scan images within a shorter period and can help doctors to start COVID-19 treatment at the earliest. In this article, a variant of the whale optimization algorithm named improved whale optimization algorithm (IWOA) is introduced. The efficiency of the IWOA is tested for unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23) benchmark functions and is compared with the whale optimization algorithm (WOA), salp swarm optimization (SSA), and sine cosine algorithm (SCA). The experiment is carried out in 30 trials and population size, and iterations are set as 30 and 100 under each trial. IWOA achieves faster convergence than WOA, SSA, and SCA and enhances the exploitation and exploration phases of WOA, avoiding local entrapment. IWOA, WOA, SSA, and SCA utilized Otsu's maximum between-class variance criteria as fitness function to compute optimal threshold values for multilevel medical CT scan image segmentation. Evaluation measures such as accuracy, specificity, precision, recall, mean, F_measure, SSIM, and 12 DWT-PCA-based texture features are computed. The experiment showed that the IWOA is efficient and achieved better segmentation evaluation measures and better segmentation mask in comparison with other methods. DWT-PCA-based texture features extracted from each of the 160 IWOA-, WOA-, SSA-, and SCA-based segmented images are fed into random forest for training, and random forest is tested with DWT-PCA-based texture features extracted from each of the 40 IWOA-, WOA-, SSA-, and SCA-based segmented images. Random forest has reported a promising classification accuracy of 97.49% for the DWT-PCA-based texture features, which are extracted from IWOA-based segmented images.
这篇文章讨论了 COVID-19 和正常胸部 CT 扫描图像的自动分割和分类。分割是分类的预处理步骤,从分割后的图像中提取的 12 个基于 DWT-PCA 的纹理特征被用作随机森林机器学习算法的输入,以对 COVID-19/非 COVID-19 疾病进行分类。通过 RT-PCR 测试诊断 COVID-19 疾病是一个耗时的过程。有时,RT-PCR 测试结果不准确;也就是说,它有假阴性,这可能会由于延迟开始指定的治疗而对人的生命造成威胁。此时,迫切需要开发一种可靠的自动 COVID-19 检测工具,该工具可以在更短的时间内从胸部 CT 扫描图像中检测 COVID-19 疾病,并帮助医生尽早开始 COVID-19 治疗。在本文中,引入了一种名为改进鲸鱼优化算法 (IWOA) 的鲸鱼优化算法的变体。测试了 IWOA 在单峰 (F1-F7)、多峰 (F8-F13) 和固定维多峰 (F14-F23) 基准函数中的效率,并与鲸鱼优化算法 (WOA)、沙蝇群优化算法 (SSA) 和正弦余弦算法 (SCA) 进行了比较。实验在 30 次试验中进行,种群大小和迭代次数分别设置为 30 和 100 次。IWOA 比 WOA、SSA 和 SCA 更快地收敛,增强了 WOA 的开发和探索阶段,避免了局部陷入。IWOA、WOA、SSA 和 SCA 利用 Otsu 的最大类间方差准则作为适应度函数,计算多电平医学 CT 扫描图像分割的最优阈值。计算了准确性、特异性、精度、召回率、均值、F_measure、SSIM 和基于 12 个 DWT-PCA 的纹理特征等评价指标。实验表明,与其他方法相比,IWOA 是有效的,并且实现了更好的分割评价指标和更好的分割掩模。从基于 IWOA、WOA、SSA 和 SCA 的分割的每个图像中提取的基于 12 个 DWT-PCA 的纹理特征被输入到随机森林中进行训练,然后使用从基于 IWOA、WOA、SSA 和 SCA 的分割的每个图像中提取的基于 12 个 DWT-PCA 的纹理特征来测试随机森林。随机森林报告了基于 IWOA 分割的图像提取的基于 12 个 DWT-PCA 的纹理特征的有希望的分类准确率为 97.49%。