Suppr超能文献

基于种群减少的改进鲸鱼优化算法的 COVID-19 X 射线图像分割。

COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction.

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Agartala, Tripura, India; Department of Computer Science and Engineering, Iswar Chandra Vidyasagar College, Belonia, Tripura, India.

Department of Mathematics, National Institute of Technology, Agartala, Tripura, India.

出版信息

Comput Biol Med. 2021 Dec;139:104984. doi: 10.1016/j.compbiomed.2021.104984. Epub 2021 Oct 30.

Abstract

Coronavirus disease 2019 (COVID-19) has caused a massive disaster in every human life field, including health, education, economics, and tourism, over the last year and a half. Rapid interpretation of COVID-19 patients' X-ray images is critical for diagnosis and, consequently, treatment of the disease. The major goal of this research is to develop a computational tool that can quickly and accurately determine the severity of an illness using COVID-19 chest X-ray pictures and improve the degree of diagnosis using a modified whale optimization method (WOA). To improve the WOA, a random initialization of the population is integrated during the global search phase. The parameters, coefficient vector (A) and constant value (b), are changed so that the algorithm can explore in the early stages while also exploiting the search space extensively in the latter stages. The efficiency of the proposed modified whale optimization algorithm with population reduction (mWOAPR) method is assessed by using it to segment six benchmark images using multilevel thresholding approach and Kapur's entropy-based fitness function calculated from the 2D histogram of greyscale images. By gathering three distinct COVID-19 chest X-ray images, the projected algorithm (mWOAPR) is utilized to segment the COVID-19 chest X-ray images. In both benchmark pictures and COVID-19 chest X-ray images, comparisons of the evaluated findings with basic and modified forms of metaheuristic algorithms supported the suggested mWOAPR's improved performance.

摘要

过去一年半以来,2019 年冠状病毒病(COVID-19)在人类生活的各个领域,包括卫生、教育、经济和旅游业,造成了巨大的灾难。快速解读 COVID-19 患者的 X 光图像对于诊断和随后的疾病治疗至关重要。本研究的主要目标是开发一种计算工具,能够使用 COVID-19 胸部 X 光图像快速准确地确定疾病的严重程度,并使用改进的鲸鱼优化算法(WOA)提高诊断程度。为了改进 WOA,在全局搜索阶段集成了种群的随机初始化。改变参数、系数向量(A)和常数值(b),使算法在早期阶段进行探索,同时在后期阶段广泛利用搜索空间。使用多水平阈值方法和基于灰度图像 2D 直方图的 Kapur 熵适应度函数对六个基准图像进行分割,评估了带有种群减少的改进鲸鱼优化算法(mWOAPR)的效率。通过收集三张不同的 COVID-19 胸部 X 光图像,利用提出的算法(mWOAPR)对 COVID-19 胸部 X 光图像进行分割。在基准图像和 COVID-19 胸部 X 光图像中,用基本和改进的元启发式算法对评估结果进行比较,支持了所提出的 mWOAPR 的改进性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e435/8556692/849cf142095a/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验