Suppr超能文献

一种基于迁移学习的深度学习模型,用于诊断新冠病毒肺炎CT扫描图像。

A transfer learning based deep learning model to diagnose covid-19 CT scan images.

作者信息

Pandey Sanat Kumar, Bhandari Ashish Kumar, Singh Himanshu

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology Patna, Bihar, India.

Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, Tiruchippalli, India.

出版信息

Health Technol (Berl). 2022;12(4):845-866. doi: 10.1007/s12553-022-00677-4. Epub 2022 Jun 9.

Abstract

To save the life of human beings during the pandemic conditions we need an effective automated method to deal with this situation. In pandemic conditions when the available resources becomes insufficient to handle the patient's load, then we needed some fast and reliable method which analyse the patient medical data with high efficiency and accuracy within time limitations. In this manuscript, an effective and efficient method is proposed for exact diagnosis of the patient whether it is coronavirus disease-2019 (covid-19) positive or negative with the help of deep learning. To find the correct diagnosis with high accuracy we use pre-processed segmented images for the analysis with deep learning. In the first step the X-ray image or computed tomography (CT) of a covid-19 infected person is analysed with various schemes of image segmentation like simple thresholding at 0.3, simple thresholding at 0.6, multiple thresholding (between 26-230) and Otsu's algorithm. On comparative analysis of all these methods, it is found that the Otsu's algorithm is a simple and optimum scheme to improve the segmented outcome of binary image for the diagnosis point of view. Otsu's segmentation scheme gives more precise values in comparison to other methods on the scale of various image quality parameters like accuracy, sensitivity, f-measure, precision, and specificity. For image classification here we use Resnet-50, MobileNet and VGG-16 models of deep learning which gives accuracy 70.24%, 72.95% and 83.18% respectively with non-segmented CT scan images and 75.08%, 80.12% and 99.28% respectively with Otsu's segmented CT scan images. On a comparative study we find that the VGG-16 models with CT scan image segmented with Otsu's segmentation gives very high accuracy of 99.28%. On the basis of the diagnosis of the patient firstly we go for an arterial blood gas (ABG) analysis and then on the behalf of this diagnosis and ABG report, the severity level of the patient can be decided and according to this severity level, proper treatment protocols can be followed immediately to save the patient's life. Compared with the existing works, our deep learning based novel method reduces the complexity, takes much less time and has a greater accuracy for exact diagnosis of coronavirus disease-2019 (covid-19).

摘要

为了在疫情期间拯救人类生命,我们需要一种有效的自动化方法来应对这种情况。在疫情期间,当可用资源不足以处理患者负荷时,我们需要一些快速可靠的方法,能够在时间限制内高效准确地分析患者的医疗数据。在本论文中,提出了一种有效且高效的方法,借助深度学习准确诊断患者是否感染新型冠状病毒肺炎(COVID-19)呈阳性或阴性。为了高精度地找到正确诊断结果,我们使用预处理后的分割图像进行深度学习分析。第一步,使用各种图像分割方案,如阈值为0.3的简单阈值法、阈值为0.6的简单阈值法、多阈值法(26 - 230之间)和大津算法,对COVID-19感染者的X射线图像或计算机断层扫描(CT)图像进行分析。通过对所有这些方法的对比分析发现,从诊断角度来看,大津算法是一种简单且最优的方案,可改善二值图像分割结果。在各种图像质量参数(如准确度、灵敏度、F值、精度和特异性)方面,与其他方法相比,大津分割方案给出的值更精确。对于此处的图像分类,我们使用深度学习的Resnet-50、MobileNet和VGG-16模型,对于未分割的CT扫描图像,其准确率分别为70.24%、72.95%和83.18%,对于经大津算法分割的CT扫描图像,其准确率分别为75.08%、80.12%和99.28%。通过对比研究发现,使用经大津分割的CT扫描图像的VGG-16模型准确率高达99.28%。首先根据患者的诊断结果进行动脉血气(ABG)分析,然后根据此诊断结果和ABG报告确定患者的严重程度,并根据该严重程度立即遵循适当的治疗方案以挽救患者生命。与现有工作相比,我们基于深度学习的新方法降低了复杂性,所需时间更少,并且在准确诊断新型冠状病毒肺炎(COVID-19)方面具有更高的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验