Suppr超能文献

基于元启发式算法的 COVID-19 胸部 X 射线图像筛查模型。

Metaheuristic-based Deep COVID-19 Screening Model from Chest X-Ray Images.

机构信息

Computer Science Engineering, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, India.

Department of Computer Science and Engineering, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, 177005, India.

出版信息

J Healthc Eng. 2021 Mar 1;2021:8829829. doi: 10.1155/2021/8829829. eCollection 2021.

Abstract

COVID-19 has affected the whole world drastically. A huge number of people have lost their lives due to this pandemic. Early detection of COVID-19 infection is helpful for treatment and quarantine. Therefore, many researchers have designed a deep learning model for the early diagnosis of COVID-19-infected patients. However, deep learning models suffer from overfitting and hyperparameter-tuning issues. To overcome these issues, in this paper, a metaheuristic-based deep COVID-19 screening model is proposed for X-ray images. The modified AlexNet architecture is used for feature extraction and classification of the input images. Strength Pareto evolutionary algorithm-II (SPEA-II) is used to tune the hyperparameters of modified AlexNet. The proposed model is tested on a four-class (i.e., COVID-19, tuberculosis, pneumonia, or healthy) dataset. Finally, the comparisons are drawn among the existing and the proposed models.

摘要

COVID-19 对全球产生了巨大影响。由于这种大流行,许多人失去了生命。COVID-19 感染的早期检测有助于治疗和隔离。因此,许多研究人员设计了深度学习模型来早期诊断 COVID-19 感染患者。然而,深度学习模型存在过拟合和超参数调整问题。为了克服这些问题,本文提出了一种基于元启发式的 X 射线图像深度 COVID-19 筛选模型。改进的 AlexNet 架构用于输入图像的特征提取和分类。使用强 Pareto 进化算法 II(SPEA-II)来调整改进的 AlexNet 的超参数。该模型在一个四类(即 COVID-19、肺结核、肺炎或健康)数据集上进行了测试。最后,对现有模型和提出的模型进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea95/7946481/b487f57cf5b4/JHE2021-8829829.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验