Fan Sisi, Wang Shuo, Ding Longjiang, Speck Thomas, Yan Hao, Nussberger Stephan, Liu Na
2nd Physics Institute, University of Stuttgart, Stuttgart, Germany.
Max Planck Institute for Solid State Research, Stuttgart, Germany.
Nat Mater. 2025 Feb;24(2):278-286. doi: 10.1038/s41563-024-02075-9. Epub 2025 Jan 13.
The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs). We demonstrate that reshaping of DNA rafts at the nanoscale can be coupled to reshaping of GUVs at the microscale. The nanorafts collectively undergo reversible transitions between isotropic and short-range local order on the lipid membrane, programmably remodelling the GUV shape. Assisted by the biogenic pores, during GUV shape recovery the locally ordered DNA rafts perforate the membrane, forming sealable synthetic channels for large cargo transport. Our work outlines a versatile platform for interfacing reconfigurable DNA nanostructures with synthetic cells, expanding the potential of DNA nanotechnology in synthetic biology.
生物物质的形状在不同长度尺度下对细胞功能至关重要,并决定了细胞成分如何相互识别、相互作用和做出反应。然而,它们的形状往往是短暂的,且难以重新编程。在此,我们构建了一个由信号响应性DNA纳米筏、生物源孔和巨型单层囊泡(GUV)组成的合成细胞模型。我们证明,纳米尺度下DNA筏的重塑可以与微米尺度下GUV的重塑相耦合。纳米筏在脂质膜上集体经历各向同性和短程局部有序之间的可逆转变,可程序化地重塑GUV的形状。在生物源孔的辅助下,在GUV形状恢复过程中,局部有序的DNA筏穿透膜,形成用于大型货物运输的可密封合成通道。我们的工作概述了一个用于将可重构DNA纳米结构与合成细胞连接的通用平台,扩展了DNA纳米技术在合成生物学中的潜力。